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Let V be a finite dimensional C-vector space.

The space V is called symplectic if there is a bilinear form
ω : V × V → C which is non-degenerate and alternating, i.e.
ω(v , v) = 0 for all v ∈ V .

For V symplectic define

Sp(V ) := {g ∈ GL(V ) | ω(gv , gw) = ω(v ,w)} ≤ GL(V ) .

Example

For V = C2n and ω(v ,w) := v⊤Jnw with Jn :=
(

0 In
−In 0

)
, we

have
Sp2n(C) = {g ∈ GL2n(C) | g⊤Jng = Jn} .
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ω(v , v) = 0 for all v ∈ V .

For V symplectic define

Sp(V ) := {g ∈ GL(V ) | ω(gv , gw) = ω(v ,w)} ≤ GL(V ) .

Example

Let h be a vector space. Then h⊕ h∗ is symplectic via
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)
= g(v)− f (w) .

For W ≤ GL(h) the induced action on h⊕ h∗ is symplectic.
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Let V be a finite dimensional C-vector space.

The space V is called symplectic if there is a bilinear form
ω : V × V → C which is non-degenerate and alternating, i.e.
ω(v , v) = 0 for all v ∈ V .

For V symplectic define

Sp(V ) := {g ∈ GL(V ) | ω(gv , gw) = ω(v ,w)} ≤ GL(V ) .

Example

Let h be a vector space. Then h⊕ h∗ is symplectic via

ω
(
(v , f ), (w , g)

)
= g(v)− f (w) .

For W ≤ GL(h) the induced action on h⊕ h∗ is symplectic.

Fact: Sp(V ) ≤ SL(V ).
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Let C2 :=
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≤ Sp2(C). Then
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Classical fact
The variety V /G is smooth if and only if G is
generated by reflections, i.e. g ∈ GL(V ) with
rk(g − 1) = 1.
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Let G ≤ GL(V ), |G | < ∞.

Consider

V /G := SpecC[V ]G “=” space of orbits .

C2

Let C2 :=
〈(−1 0

0 −1

)〉
≤ Sp2(C). Then

C[u, v ,w ]/⟨uv − w2⟩ ∼= C[x , y ]C2 .

Classical fact
The variety V /G is smooth if and only if G is
generated by reflections, i.e. g ∈ GL(V ) with
rk(g − 1) = 1.

Corollary

If V is symplectic and G ≤ Sp(V ), then V /G is singular.



Symplectic Resolutions Linear quotients
Cox rings

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR



Symplectic Resolutions Linear quotients
Cox rings

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .



Symplectic Resolutions Linear quotients
Cox rings

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .

−−→



Symplectic Resolutions Linear quotients
Cox rings

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .

−−→

If G ≤ Sp(V ), then V /G has a symplectic structure.



Symplectic Resolutions Linear quotients
Cox rings

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Resolutions
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If G ≤ Sp(V ), then V /G has a symplectic structure.
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A symplectic resolution of V /G is a resolution φ : X → V /G ,
where X is a symplectic variety and φ is an isomorphism of
symplectic varieties over the smooth locus.
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Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .

−−→

If G ≤ Sp(V ), then V /G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V /G is a resolution φ : X → V /G ,
where X is a symplectic variety and φ is an isomorphism of
symplectic varieties over the smooth locus.

In general, those do not exist!
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Symplectic
reflection groups

dimV ≥ 4

Improper
(complex
reflection
groups)

Proper

Symplectically
primitive

Symplectically
imprimitive

Complex
primitive

Complex
imprimitive

# open cases DONE! DONE! 39 6
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without prior knowledge of X via an algorithm by Yamagishi.

2. Recover all minimal models via variation of GIT quotient (→
project A23).
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Let Y be a complex normal irreducible variety.

A prime divisor on Y is a subvariety D ⊆ Y of codimension 1.

The Weil divisor on Y is any element of the free group Div(Y )
generated by all prime divisors.

One can associated to any rational function f ∈ C(Y )× a
principal divisor div(f ).

The class group of Y is the quotient
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Example

For Y = V (xy − z2) ⊆ A3, we have

Cl(Y ) ∼= ⟨[V (y , z)]⟩ ∼= Z/2Z .



Divisor class groups
Linear quotients
Cox rings
McKay correspondence

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Let Y be a complex normal irreducible variety.

A prime divisor on Y is a subvariety D ⊆ Y of codimension 1.

The Weil divisor on Y is any element of the free group Div(Y )
generated by all prime divisors.

One can associated to any rational function f ∈ C(Y )× a
principal divisor div(f ).

The class group of Y is the quotient

Cl(Y ) := Div(Y )/⟨div(f ) | f ∈ C(Y )×⟩ .

Example

For Y = V (xy − z2) ⊆ A3, we have

Cl(Y ) ∼= ⟨[V (y , z)]⟩ ∼= Z/2Z .

V (y , z)
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For now: let Cl(Y ) be finitely generated and free.

Fix a finitely generated subgroup H ≤ Div(Y ), such that the
projection H → Cl(Y ) is an isomorphism.

The Cox ring of Y is the Cl(Y )-graded ring

R(Y ) :=
⊕
D∈H

Γ(Y ,OY (D)) .

Fact: Different choices of H give graded isomorphic rings.

Example

Let Y = Pn, D = V (x0) und H = ZD. For k ∈ Z we have

Γ(Y ,OY (kD)) ∼= {f ∈ C[x ] | f homogeneous, deg f = k} ∪ {0} .

Hence R(Pn) ∼= C[x ] with the standard grading.
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Let G ≤ Sp(V ) finite.

Lemma
We have Cl(V /G ) ∼= Hom(G ,C×) =: Ab(G )∨.

Recall: Cl(C2/C2) = Cl(V (xy − z2)) ∼= Z/2Z.

Theorem (Arzhantsev–Gǎıfullin, 2010)

The Cox ring R(V /G ) is Ab(G )∨-graded isomorphic to C[V ][G ,G ].
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Let G ≤ Sp(V ) finite.

Lemma
We have Cl(V /G ) ∼= Hom(G ,C×) =: Ab(G )∨.

Recall: Cl(C2/C2) = Cl(V (xy − z2)) ∼= Z/2Z.

Theorem (Arzhantsev–Gǎıfullin, 2010)

The Cox ring R(V /G ) is Ab(G )∨-graded isomorphic to C[V ][G ,G ].

Example

For G = C2 the group [G ,G ] is trivial, so R(C2/G ) ∼= C[x1, x2]
graded by C2.



Remember the goal:

Compute the Cox ring R(X ) of any minimal model X of V /G
without prior knowledge of X .
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Let G ≤ Sp(V ) be a finite symplectic reflection group.

Theorem (Ito–Reid, 1996)

Let X → V /G be a minimal model of V /G . Then there is a
one-to-one correspondence between the conjugacy classes of
symplectic reflections in G and the exceptional prime divisors
of X .
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Let G ≤ Sp(V ) be a finite symplectic reflection group.

Theorem (Ito–Reid, 1996)

Let X → V /G be a minimal model of V /G . Then there is a
one-to-one correspondence between the conjugacy classes of
symplectic reflections in G and the exceptional prime divisors
of X .

Example

The element
(−1 0

0 −1

)
∈ C2 is the single

symplectic reflection of C2.
Accordingly, the minimal resolution of
C2/C2 has one exceptional prime divisor.

−−→
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Let g ∈ G be a symplectic reflection of order r and write

g = diag(ζa1r , . . . , ζanr )

with an r -th root of unity ζr and 0 ≤ ai < r .

For 0 ̸= h =
∑

α∈Zn
≥0

λαx
α1
1 · · · xαn

n ∈ C[V ] = C[x1, . . . , xn], where
n = dimV , we define

νg (h) := min
α∈Zn

≥0

λα ̸=0

n∑
i=1

αiai

and extend this to a valuation on C(V ) and hence on C(V )G .
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Let g ∈ G be a symplectic reflection of order r and write

g = diag(ζa1r , . . . , ζanr )

with an r -th root of unity ζr and 0 ≤ ai < r .

For 0 ̸= h =
∑

α∈Zn
≥0

λαx
α1
1 · · · xαn

n ∈ C[V ] = C[x1, . . . , xn], where
n = dimV , we define

νg (h) := min
α∈Zn

≥0

λα ̸=0

n∑
i=1

αiai

and extend this to a valuation on C(V ) and hence on C(V )G .

Theorem (Ito–Reid, 1996)

Let E ∈ Div(X ) be the exceptional divisor corresponding to g .
Then the valuation on C(X ) = C(V )G corresponding to E is
given by 1

r νg .
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induced by φ via the isomorphism φ∗ : C(V /G ) → C(X ) and the
push-forward φ∗ : Cl(X ) → Cl(V /G ).



Embedding the Cox ring
McKay correspondence
Yamagishi’s algorithm

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Let G ≤ Sp(V ) finite and let φ : X → V /G be a minimal model.

Recall: We have Cl(V /G ) = Ab(G )∨ and R(V /G ) = C[V ][G ,G ].

Theorem (Hausen–Keicher–Laface, 2016)

There is a surjective morphism of graded rings R(X ) → R(V /G )
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Theorem (Donten-Bury, Grab, Wísniewski, Yamagishi, 2015+)
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where Cl(X )free is the free part of Cl(X ).



Embedding the Cox ring
McKay correspondence
Yamagishi’s algorithm

J. Schmitt (TU Kaiserslautern) On the computation of Cox rings – using OSCAR

Let G ≤ Sp(V ) finite and let φ : X → V /G be a minimal model.

Recall: We have Cl(V /G ) = Ab(G )∨ and R(V /G ) = C[V ][G ,G ].

Theorem (Hausen–Keicher–Laface, 2016)

There is a surjective morphism of graded rings R(X ) → R(V /G )
induced by φ via the isomorphism φ∗ : C(V /G ) → C(X ) and the
push-forward φ∗ : Cl(X ) → Cl(V /G ).

Theorem (Donten-Bury, Grab, Wísniewski, Yamagishi, 2015+)

There is an injective morphism of graded rings

Θ : R(X ) → R(V /G )⊗C C[Cl(X )free] ,

where Cl(X )free is the free part of Cl(X ).

Note: Cl(X )free = Zm where m is the number of conjugacy classes
of symplectic reflections in G .
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We want to find generators of the image of

Θ : R(X ) → R(V /G )⊗C C[Cl(X )free] .

Let g1, . . . , gm be representatives of the symplectic reflections of G
and let ν1, . . . , νm be the corresponding valuation on C(V ).

Let f1, . . . , fs ∈ R(V /G ) be homogeneous generators of
R(V /G ) = C[V ][G ,G ] and let f ∈ R(V /G ) be homogeneous.
We say that f1, . . . , fs satisfy (∗f ) if f can be expressed as a sum
of monomials F1, . . . ,Fk in the f1, . . . , fs such that νi (f ) ≤ νi (Fj)
for every 1 ≤ i ≤ m and 1 ≤ j ≤ k .

Theorem (Grab, Yamagishi, 2018+)

Homogeneous generators f1, . . . , fs ∈ R(V /G ) give rise to
generators of imΘ if and only if they satisfy (∗f ) for every
homogeneous f ∈ R(V /G ).
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For now: assume that m = 1; let ν be the single valuation.

Let f1, . . . , fs ∈ C[V ][G ,G ] be (any) Ab(G )∨-homogeneous
generators and consider the morphism

α : C[X1, . . . ,Xs ] → C[V ][G ,G ], Xi 7→ fi .

Endow C[X1, . . . ,Xs ] with two gradings:

• by Ab(G )∨ lifted via α and

• by Z via degν(Xi ) := ν(fi ), 1 ≤ i ≤ s.

One can construct two ideals I , J ⊴ C[X1, . . . ,Xs ] corresponding to
“minimal parts” with respect to the two gradings.

Proposition (Yamagishi, 2018)

We have I ⊆ J. The generators f1, . . . , fs satisfy (∗f ) for every
homogeneous f ∈ R(V /G ) if and only if I = J.
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