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Symplectic Forms

A bilinear form w : V x V — C is called symplectic if it is
non-degenerate and alternating, i.e. w(v,v) =0 for all v € V.

Let V = C?" and
w(v,w) = v Jw

with J, := (—Ol,, '6’)
Symplectic Groups
Sp(V,w) :={g € GL(V) | w(gv,gw) = w(v,w) Vv,w € V} .
For V = C?":
Sp2n(C) = {g € GL2n(C) | g " Jng = Jn} -
For n = 1: Sp,(C) = SL»(C). In general: Sp,,(C) < SLy,(C).
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Hilbert—Noether
The ring C[V]© is an affine C-algebra.
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V/G

Shephard—Todd, Chevalley

The variety V//G is smooth if and only if G is generated by
reflections, i.e. g € GL(V) with rk(g — 1) = 1.
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Back to “symplectic”

Let G < Sp(V,w) be finite. Then G < SL(V), so V/G is not
smooth.

37 (X, wx) (V/G,w)

In general no such resolution exists!
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Verbitsky

If V/G admits a symplectic resolution, then G is generated by
symplectic reflections, i.e. g € G with rk(g —1) = 2.
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What is known?

Symplectic
reflection groups
n>2
Improper
(complex
reflection Proper
groups) /
Symplectically Symplectically
imprimitive primitive
Complex Complex
imprimitive primitive
QW o o, B i AN
Groups with G(m, 1, n), K1S, (K < SLQ(C)), none none
resolution Gy Qs X7,)2L Dg (SO far) (SO far)
# open cases D()NEI DONE| 39 9




