Symplectic Resolutions

Johannes Schmitt TU Kaiserslautern 17th June 2021

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Symplectic Forms

A bilinear form $\omega: V \times V \to \mathbb{C}$ is called **symplectic** if it is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Symplectic Forms

A bilinear form $\omega: V \times V \to \mathbb{C}$ is called **symplectic** if it is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let
$$V=\mathbb{C}^{2n}$$
 and

$$\omega(\mathbf{v},\mathbf{w}) := \mathbf{v}^{\top} J_{\mathbf{n}} \mathbf{w}$$

with
$$J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$
.

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Symplectic Forms

A bilinear form $\omega: V \times V \to \mathbb{C}$ is called **symplectic** if it is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let $V = \mathbb{C}^{2n}$ and

$$\omega(\mathbf{v},\mathbf{w}) := \mathbf{v}^{\top} J_n \mathbf{w}$$

with
$$J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$
.

Symplectic Groups

$$\mathsf{Sp}(V,\omega) := \{ g \in \mathsf{GL}(V) \mid \omega(gv,gw) = \omega(v,w) \ \forall v,w \in V \} \ .$$

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Symplectic Forms

A bilinear form $\omega: V \times V \to \mathbb{C}$ is called **symplectic** if it is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let $V = \mathbb{C}^{2n}$ and

$$\omega(\mathbf{v},\mathbf{w}) := \mathbf{v}^{\top} J_n \mathbf{w}$$

with
$$J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$
.

Symplectic Groups

$$\mathsf{Sp}(V,\omega) := \{ g \in \mathsf{GL}(V) \mid \omega(gv,gw) = \omega(v,w) \ \forall v,w \in V \} \ .$$

For
$$V = \mathbb{C}^{2n}$$
:

$$\operatorname{\mathsf{Sp}}_{2n}(\mathbb{C}) = \{ g \in \operatorname{\mathsf{GL}}_{2n}(\mathbb{C}) \mid g^{\top} J_n g = J_n \} \ .$$

Let V be a \mathbb{C} -vector space of dimension 2n with $n \in \mathbb{Z}_{>0}$.

Symplectic Forms

A bilinear form $\omega: V \times V \to \mathbb{C}$ is called **symplectic** if it is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let $V = \mathbb{C}^{2n}$ and

$$\omega(\mathbf{v}, \mathbf{w}) := \mathbf{v}^{\top} J_n \mathbf{w}$$

with
$$J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$
.

Symplectic Groups

$$\mathsf{Sp}(V,\omega) := \{ g \in \mathsf{GL}(V) \mid \omega(gv,gw) = \omega(v,w) \ \forall v,w \in V \} \ .$$

For $V = \mathbb{C}^{2n}$:

$$\operatorname{Sp}_{2n}(\mathbb{C}) = \{ g \in \operatorname{GL}_{2n}(\mathbb{C}) \mid g^{\top} J_n g = J_n \}.$$

For n = 1: $\operatorname{Sp}_2(\mathbb{C}) = \operatorname{SL}_2(\mathbb{C})$. In general: $\operatorname{Sp}_{2n}(\mathbb{C}) \leq \operatorname{SL}_{2n}(\mathbb{C})$.

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Quotient varieties

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Quotient varieties

$$V/G := \operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[V]^G$$
 "=" space of orbits

$$C_2$$

Let
$$C_2 := \langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \rangle \leq \mathsf{Sp}_2(\mathbb{C}).$$

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Quotient varieties

$$V/G:=\operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[V]^G$$
 "=" space of orbits

$$\label{eq:c2} \begin{array}{l} \mathsf{C}_2 \\ \mathsf{Let} \ \mathsf{C}_2 := \left\langle \left(\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix} \right) \right\rangle \leq \mathsf{Sp}_2(\mathbb{C}). \ \mathsf{Then} \\ \\ \mathbb{C}[u,v,w]/\langle uv-w^2\rangle & \cong & \mathbb{C}[x,y]^{\mathsf{C}_2} \ , \\ \\ u & \mapsto & x^2 \ , \\ v & \mapsto & y^2 \ , \end{array}$$

 $w \mapsto xy$.

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Quotient varieties

$$V/G:=\operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits

$$C_2$$

Let $C_2:=\langle \left(egin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right) \rangle \leq \operatorname{Sp}_2(\mathbb{C}).$ Then

$$\mathbb{C}[u,v,w]/\langle uv-w^2\rangle \cong \mathbb{C}[x,y]^{C_2},$$

$$\begin{array}{ccc} u & \mapsto & x^2, \\ v & \mapsto & y^2, \\ w & \mapsto & xy. \end{array}$$

Let V be a finite dimensional \mathbb{C} -vector space and $G \leq \operatorname{GL}(V)$ be finite.

Quotient varieties

$$V/G := \operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[V]^G$$
 "=" space of orbits

$$C_2$$

Let
$$C_2 := \langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \rangle \leq \mathsf{Sp}_2(\mathbb{C})$$
. Then

$$\begin{array}{ccc} \mathbb{C}[u,v,w]/\langle uv-w^2\rangle &\cong & \mathbb{C}[x,y]^{\mathsf{C}_2} \ , \\ & u &\mapsto & x^2 \ , \\ & v &\mapsto & y^2 \ , \\ & w &\mapsto & xy \ . \end{array}$$

Hilbert-Noether

The ring $\mathbb{C}[V]^G$ is an affine \mathbb{C} -algebra.

Shephard-Todd, Chevalley

The variety V/G is smooth if and only if G is generated by reflections, i.e. $g \in GL(V)$ with rk(g-1)=1.

Resolutions

A **resolution** of V/G is a smooth variety X and a proper birational morphism $X \to V/G$.

Resolutions

A **resolution** of V/G is a smooth variety X and a proper birational morphism $X \to V/G$.

Resolutions

A **resolution** of V/G is a smooth variety X and a proper birational morphism $X \to V/G$.

Let $G \leq Sp(V, \omega)$ be finite.

Let $G \leq \operatorname{Sp}(V, \omega)$ be finite. Then $G \leq \operatorname{SL}(V)$, so V/G is not smooth.

Let $G \leq \mathrm{Sp}(V,\omega)$ be finite. Then $G \leq \mathrm{SL}(V)$, so V/G is not smooth.

Let $G \leq \operatorname{Sp}(V, \omega)$ be finite. Then $G \leq \operatorname{SL}(V)$, so V/G is not smooth.

Let $G \leq \mathrm{Sp}(V,\omega)$ be finite. Then $G \leq \mathrm{SL}(V)$, so V/G is not smooth.

Let $G \leq \operatorname{Sp}(V, \omega)$ be finite. Then $G \leq \operatorname{SL}(V)$, so V/G is not smooth.

In general no such resolution exists!

We only need to consider irreducible tuples (V, ω, G) .

We only need to consider irreducible tuples (V, ω, G) .

n = 1

If $G \leq SL_2(\mathbb{C})$, then there always is a symplectic resolution.

ightarrow "Kleinian singularities"

We only need to consider irreducible tuples (V, ω, G) .

n = 1

If $G \leq SL_2(\mathbb{C})$, then there always is a symplectic resolution. \rightarrow "Kleinian singularities"

Verbitsky

If V/G admits a symplectic resolution, then G is generated by symplectic reflections, i.e. $g \in G$ with $\mathrm{rk}(g-1)=2$.

