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For V symplectic define
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Example

For V = C2n and ω(v ,w) := v>Jnw with Jn :=
(

0 In
−In 0

)
, we

have
Sp2n(C) = {g ∈ GL2n(C) | g>Jng = Jn} .
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Let V be a finite dimensional C-vector space.

The space V is called symplectic if there is a bilinear form
ω : V × V → C which is non-degenerate and alternating, i.e.
ω(v , v) = 0 for all v ∈ V .

For V symplectic define

Sp(V ) := {g ∈ GL(V ) | ω(gv , gw) = ω(v ,w)} ≤ GL(V ) .

Example

Let h be a vector space. Then h⊕ h∗ is symplectic via

ω
(
(v , f ), (w , g)

)
= g(v)− f (w) .

For W ≤ GL(h) the induced action on h⊕ h∗ is symplectic.
Notation: Write W ∨ for this action.

Fact: Sp(V ) ≤ SL(V ).
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Let G ≤ GL(V ), |G | <∞.

Consider

V /G := SpecC[V ]G “=” space of orbits.

C2

Let C2 :=
〈(−1 0

0 −1

)〉
≤ Sp2(C). Then

C[u, v ,w ]/〈uv − w2〉 ∼= C[x , y ]C2 .

Classical fact
The variety V /G is smooth if and only if G is
generated by reflections, i.e. g ∈ GL(V ) with
rk(g − 1) = 1.

Corollary

If V is symplectic and G ≤ Sp(V ), then V /G is singular.
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Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .

−−→

If G ≤ Sp(V ), then V /G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V /G is a resolution ϕ : X → V /G ,
where X is a symplectic variety and ϕ is an isomorphism of
symplectic varieties over the smooth locus.

In general, those do not exist!
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Let G ≤ Sp(V ) be a symplectically primitive complex imprimitive
symplectic reflection group. Then the corresponding quotient
V /G does not admit a symplectic resolution except in possibly 39
cases.
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Theorem (Bellamy–S.–Thiel, 2022)

Let G ≤ Sp(V ) be a symplectically primitive complex imprimitive
symplectic reflection group. Then the corresponding quotient
V /G does not admit a symplectic resolution except in possibly 39
cases.

Proof uses deep link to representation theory via symplectic
reflection algebras.

Using theoretical bounds, we reduced the problem to finitely many
(73) open cases.

Using Champ (Thiel, 2013), we arrived at 39 open cases.
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We consider groups G which are

• complex irreducible, so there is no non-trivial decomposition
V = V1 ⊕ V2 into subspaces such that for all g ∈ G we have
g .Vi = Vi ;

• symplectically primitive, so there is no non-trivial
decomposition V = V1 ⊕ · · · ⊕ Vk into symplectic subspaces
such that for all g ∈ G and all i there is j with g(Vi ) = Vj ;

• complex imprimitive, so there exists such a decomposition into
(not necessarily symplectic) subspaces.

For these groups we have dimV = 4 (Cohen, 1980), so we may
assume V = C4.
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For d ∈ Z≥1 let ζd ∈ C be a primitive d-root of unity and set

µd := 〈diag(ζd , ζd)〉 ≤ GL2(C) .

Let T,O, I ≤ SL2(C) be the binary tetrahedral, binary octahedral
and binary icosahedral group, respectively.
We have the following infinite families of groups in GL2(C):

(1) µdT, with d a multiple of 6,

(2) µdO, with d a multiple of 4,

(3) µd I, with d a multiple of 4, 6, or 10,

(4) OT2d , with d not divisible by 4.

The group OTd is defined as follows. We have T E O with
O/T ∼= C2, so O = 〈T, g〉. We then set

OTd =
2d−2⋃
k=0
k even

ζk2dT ∪
2d−1⋃
k=1
k odd

ζk2dgT .
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Let H ≤ GL2(C) be one of the groups in (1) - (4).
For h ∈ H we set

h∨ :=
(

h 0
0 (h>)−1

)
∈ GL4(C) .

Let

s :=

(
1

−1
−1

1

)
∈ GL4(C)

and define

E (H) := {h∨, h∨s | h ∈ H} ≤ Sp4(C) .

Theorem (Cohen, 1980)

The four infinite families arising in this way give all the
symplectically primitive complex imprimitive symplectic reflection
groups up to conjugacy.
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The group Dd = 〈µ∨d , s〉 ≤ E (H) is a dihedral group and a normal
subgroup of E (H) (in symplectic representation!).
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Lemma
The group Dd = 〈µ∨d , s〉 ≤ E (H) is a dihedral group and a normal
subgroup of E (H) (in symplectic representation!).

Let H0 ≤ H be the largest complex reflection subgroup.

Lemma
The group H0 is primitive and H∨0 is a normal subgroup of E (H).

Group
Shephard–Todd

Group
Shephard–Todd

number number

µ6T 5 µ12T 7

µ4O 13 µ8O 9
µ12O 15 µ24O 11

µ4I 22 µ6I 20
µ10I 16 µ12I 21
µ20I 17 µ30I 18
µ60I 19

OT2 12 OT4 8
OT6 14 OT12 10
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Lemma
The group Dd = 〈µ∨d , s〉 ≤ E (H) is a dihedral group and a normal
subgroup of E (H) (in symplectic representation!).

Let H0 ≤ H be the largest complex reflection subgroup.

Lemma
The group H0 is primitive and H∨0 is a normal subgroup of E (H).

Note: This splits the four
families in 17 (2 + 4 + 7 + 4)
infinite families.
E.g. µ6dT for d odd (with
H0 = G5) and µ6dT for d even
(with H0 = G7).

Group
Shephard–Todd

Group
Shephard–Todd

number number

µ6T 5 µ12T 7

µ4O 13 µ8O 9
µ12O 15 µ24O 11

µ4I 22 µ6I 20
µ10I 16 µ12I 21
µ20I 17 µ30I 18
µ60I 19

OT2 12 OT4 8
OT6 14 OT12 10



The Classification Problem

The Groups in Question

Mise en Place

Construction of the Module



Deformations
The Groups in Question
Mise en Place
The Module

Study V /G via (flat) deformations.

Problem: We don’t know a presentation of C[V ]G in general. Also,
C[V ]G does not “know” about the group action.

Idea: Deform C[V ]o G instead!
This is as vector space C[V ]⊗C CG with multiplication given by
g · f := g f · g for f ∈ C[V ], g ∈ G .

Note: Z (C[V ]o G ) = C[V ]G and C[V ]o G has an easy
presentation.

Etingof–Ginzburg, 2002

Such deformations are given by the symplectic reflection algebras
Hc(V ,G ).
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Symplectic Reflection Algebras
The Groups in Question
Mise en Place
The Module

Write S(G ) ⊆ G for the set of symplectic reflections.

Let c : S(G )→ C be a G -conjugacy invariant function.

For g ∈ S(G ) decompose V = V g ⊕ (V g )⊥ w.r.t. ω.

Write πg : V → (V g )⊥ for the projection and set ωg := ω ◦ πg .

Let Hc(G ,V ) be the quotient of T (V )o G by the ideal〈
[u, v ]−

∑
g∈S(G)

c(g)ωg (u, v)g
∣∣∣ u, v ∈ V

〉
.

Note: H0(G ,V ) = C[V ]o G , so Hc(G ,V ) is a deformation of
C[V ]o G .

From now on: Hc(G ) := Hc(G ,V ).
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Strategy
The Groups in Question
Mise en Place
The Module

Theorem (Ginzburg–Kaledin, 2004)

If V /G admits a symplectic resolution, then the variety
SpecZ (Hc(G )) is smooth for generic c.

Theorem (Etingof–Ginzburg, 2002)

The variety SpecZ (Hc(G )) is smooth if and only if dimS = |G |
for all irreducible Hc(G )-modules S .

Strategy

Find for all c an irreducible Hc(G )-module S with dim S 6= |G |.

The same strategy was already used for the complex reducible
symplectic reflection groups.
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Let M by a G -module. This extends to a module M̃ over
T (V )o G by letting V act trivially.
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T (V )o G by letting V act trivially.

Definition
The module M is called c-rigid, if M̃ descends to an
Hc(G )-module.
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Let M by a G -module. This extends to a module M̃ over
T (V )o G by letting V act trivially.

Definition
The module M is called c-rigid, if M̃ descends to an
Hc(G )-module.

Technical detail
The module M is c-rigid if and only if∑

g∈S(G)

c(g)ωg (u, v)ρM(g) = 0

for all u, v ∈ V , where ρM is the representation corresponding to
M.



Reducing to Groups I
Rigid Representations

The Groups in Question
Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions

Let M by a G -module. This extends to a module M̃ over
T (V )o G by letting V act trivially.

Definition
The module M is called c-rigid, if M̃ descends to an
Hc(G )-module.



Reducing to Groups I
Rigid Representations

The Groups in Question
Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions

Let M by a G -module. This extends to a module M̃ over
T (V )o G by letting V act trivially.

Definition
The module M is called c-rigid, if M̃ descends to an
Hc(G )-module.

If M (respectively ρM) is given explicitly via matrices, one can just
calculate whether it is rigid!
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Let M by a G -module. This extends to a module M̃ over
T (V )o G by letting V act trivially.

Definition
The module M is called c-rigid, if M̃ descends to an
Hc(G )-module.

If M (respectively ρM) is given explicitly via matrices, one can just
calculate whether it is rigid!

Example (Thiel, 2014)

Let Dd ≤ GL2(C) be a dihedral group of order ≥ 10 and consider
D∨d ≤ Sp4(C). Then almost all simple Dd -modules are c-rigid for
all c.



Reducing to Groups II
Baby Verma Modules

The Groups in Question
Mise en Place
The Module

Let W ≤ GL(h) be a complex reflection group and consider
W ∨ ≤ Sp(h⊕ h∗).

In this case, the representation theory of Hc(W ∨) is much better
understood:

Theorem (Gordon, 2003)

For any irreducible W -module λ there exists an irreducible
Hc(W ∨)-module L(λ) of dimension dim L(λ) ≤ |W |.

One can explicitly compute these modules using an algorithm by
Thiel (2015).
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c1 : S(H∨0 )→ C and c2 : S(Dd)→ C .
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Remember: We want to construct an Hc(E (H))-module
of dimension < |E (H)|.
Lemma
We have S(E (H)) = S(H∨0 ) ∪̇ S(Dd), stable under
E (H)-conjugacy.

This means we can “split” c into two parameters c = c1 + c2 with

c1 : S(H∨0 )→ C and c2 : S(Dd)→ C .

This gives (sub)algebras

Hc1(H∨0 ) ⊆ Hc1(H∨) ⊆ Hc1(E (H)) ! Hc(E (H)) ! Hc2(Dd) .
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For λ ∈ Irr(H), we have λ|H0 ∈ Irr(H0) giving rise to a simple
Hc1(H∨0 )-module L(λ|H0) with dim L(λ|H0) ≤ |H0|.
Lemma
The module L(λ|H0) is a simple Hc1(H∨)-module as well.

We can induce any simple Hc1(H∨)-module L to an
Hc1(E (H))-module M with dimM = 2 dim L.

Theorem
This is an Hc(E (H))-module if and only if all the constituents of
M|Dd

are c2-rigid w.r.t. Hc2(Dd).
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is c2-rigid for
arbitrary c2 and H0 � H.
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Theorem
Such a module exists except in possibly 73 cases.
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if we can find λ ∈ Irr(H) such that L(λ|H0)|Dd

is c2-rigid for
arbitrary c2 and H0 � H.

Using theoretical bounds on d we obtain:

Theorem
Such a module exists except in possibly 73 cases.
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µ30I µd I, d ∈ {30, 90, 150} µ60I µd I, d ∈ {60, 120, 180, 240}
OT2 OTd , d ∈ {2, 10, 14} OT4 OTd , d ∈ {4, 20}
OT6 OTd , d ∈ {6, 18, 30} OT12 OTd , d ∈ {12, 36}
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We can construct an Hc(E (H))-module M with dimM < |E (H)|,
if we can find λ ∈ Irr(H) such that L(λ|H0)|Dd

is c2-rigid for
arbitrary c2 and H0 � H.

Using the Magma-package Champ (Thiel, 2013) we can improve
the theoretical bounds and obtain sharp bounds in many cases:
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We can construct an Hc(E (H))-module M with dimM < |E (H)|,
if we can find λ ∈ Irr(H) such that L(λ|H0)|Dd

is c2-rigid for
arbitrary c2 and H0 � H.

Using the Magma-package Champ (Thiel, 2013) we can improve
the theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem
Such a module exists except in possibly 39 cases. In at least 18 of
them no such module exists.

H0
Groups containing H0 as

H0
Groups containing H0 as

largest reflection group largest reflection group

µ6T µdT, d ∈ {6, 18, 30} µ12T µdT, d ∈ {12, 24, 36, 48}
µ4O µdO, d ∈ {4, 20, 28} µ8O µdO, d ∈ {8, 16, 32, 40, 56, 64}
µ12O µdO, d ∈ {12, 36, 60} µ24O µdO, d ∈ {24, 48, 72, 96}
µ4I µd I, d ∈ {4, 8, 16, 28, 32, 44, 52, 56, 64} µ6I µd I, d ∈ {6, 18, 42, 54, 66, 78}
µ10I µd I, d ∈ {10, 50, 70} µ12I µd I, d ∈ {12, 24, 36, 48, 72, 84,
µ20I µd I, d ∈ {20, 40, 80, 100, 140} 96, 108, 132, 144}
µ30I µd I, d ∈ {30, 90, 150} µ60I µd I, d ∈ {60, 120, 180, 240}
OT2 OTd , d ∈ {2, 10, 14} OT4 OTd , d ∈ {4, 20}
OT6 OTd , d ∈ {6, 18, 30} OT12 OTd , d ∈ {12, 36}



Conclusion (Refinement)
Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions

We can construct an Hc(E (H))-module M with dimM < |E (H)|,
if we can find λ ∈ Irr(H) such that L(λ|H0)|Dd

is c2-rigid for
arbitrary c2 and H0 � H.

Using the Magma-package Champ (Thiel, 2013) we can improve
the theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem
Such a module exists except in possibly 39 cases. In at least 18 of
them no such module exists.

H0
Groups containing H0 as

H0
Groups containing H0 as

largest reflection group largest reflection group

µ6T µ6T µ12T µ12T

µ4O µ4O µ8O µdO, d ∈ {8, 16}
µ12O µ12O µ24O µdO, d ∈ {24, 48, 72, 96}
µ4I µ4I µ6I µ6I
µ10I µ10I µ12I µd I, d ∈ {12, 24, 36, 48, 72, 84,
µ20I µd I, d ∈ {20, 40, 80, 100, 140} 96, 108, 132, 144}
µ30I µd I, d ∈ {30, 90, 150} µ60I µd I, d ∈ {60, 120, 180, 240}
OT2 OT2 OT4 OT4

OT6 OT6 OT12 OT12



Conclusion (Refinement)
Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions

We can construct an Hc(E (H))-module M with dimM < |E (H)|,
if we can find λ ∈ Irr(H) such that L(λ|H0)|Dd

is c2-rigid for
arbitrary c2 and H0 � H.

Using the Magma-package Champ (Thiel, 2013) we can improve
the theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem
Such a module exists except in possibly 39 cases. In at least 18 of
them no such module exists.

H0
Groups containing H0 as

H0
Groups containing H0 as

largest reflection group largest reflection group

µ6T µ6T µ12T µ12T

µ4O µ4O µ8O µdO, d ∈ {8, 16}
µ12O µ12O µ24O µdO, d ∈ {24, 48, 72, 96}
µ4I µ4I µ6I µ6I
µ10I µ10I µ12I µd I, d ∈ {12, 24, 36, 48, 72, 84,
µ20I µd I, d ∈ {20, 40, 80, 100, 140} 96, 108, 132, 144}
µ30I µd I, d ∈ {30, 90, 150} µ60I µd I, d ∈ {60, 120, 180, 240}
OT2 OT2 OT4 OT4

OT6 OT6 OT12 OT12



Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Mise en Place
The Module

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions

Final result (so far)

Let G ≤ Sp(V ) be a symplectically primitive complex imprimitive
symplectic reflection group. Then the corresponding quotient
V /G does not admit a symplectic resolution except in possibly 39
cases.
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Finish the classification: 45 groups left, all of rank 4.

If there is no symplectic resolution, there is still a (singular)
Q-factorial terminalization (minimal model) by the MMP.

• Can we explicitely construct those?

• How many are there? How are they related?

• What is their Cox ring?

• Can we construct the movable cone?

Generalize all this to subgroups of SL(V ).
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