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V : symplectic C-vector space, dim(V ) = n < ∞
G ≤ Sp(V ): finite group

The linear quotient of V by G is the affine variety

V /G = SpecC[V ]G “=” space of orbits.

Example

V = C2 and G =
{
( 1 0
0 1 ),

(−1 0
0 −1

)}
≤ GL2(C)

C[V ]G ∼= C[x , y , z ]/⟨xy − z2⟩

V /G = V (xy − z2) ⊆ A3

Fact: V /G is singular.
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The variety V /G inherits the symplectic structure of V .
=⇒ V /G is a symplectic variety (Beauville, 2000).

A symplectic resolution of V /G is a projective resolution
φ : X → V /G with X a symplectic variety and φ an isomorphism
of symplectic varieties over the smooth locus.

Example

Minimal resolutions of Kleinian
singularities

φ−−−→
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In general, there is no symplectic resolution of V /G (for example,
G = ⟨−I4⟩).

Classification of quotients admitting a symplectic resolution:
ongoing work since ∼2000.

Only 45 groups left to classify.

Symplectic resolutions only exist in special cases.

Fact: There is always a symplectic partial resolution – a Q-factorial
terminalization – of V /G (Birkar–Cascini–Hacon–McKernan,
2010).

Question: Can we construct X → V /G algorithmically?
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In the following: φ : X → V /G symplectic resolution (or a
Q-factorial terminalization)

Proposition (Namikawa, 2015)

The variety X is a relative Mori dream space over V /G .

Equivalently: The Cox ring R(X ) is a finitely generated C-algebra.

Assume that Cl(X ) is free. The Cox ring of X is the algebra

R(X ) =
⊕

[D]∈Cl(X )

Γ(X ,OX (D)).

Example

R(Pn) = C[x0, . . . , xn] with the standard grading.
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The class group Cl(X ) is a finitely generated abelian group.

In all ‘interesting cases’, the group Cl(X ) is free (S., 2024).

Given a D ∈ Div(X ), we obtain a positively graded algebra

S(D) =
⊕

k∈Z≥0

Γ(X ,OX (kD))

and the variety X (D) = Proj S(D).

For some D (ample), we have X (D) ∼= X .

All Q-factorial terminalizations of V /G arise in this way.
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How to construct X :

(1) Compute R(X ) (without knowing X !)

(2) Find a good D ∈ Div(X )

(3) Compute S(D)
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Proposition (Grab, 2019)

There is an injective graded morphism

Θ : R(X ) → R(V /G )⊗C C[Cl(X )free].

Fact: We have Cl(V /G ) ∼= Hom(G ,C×)(= ∆) (Benson, 1993).

Theorem (Arzhantsev–Găıfullin, 2010)

There is a graded isomorphism

R(V /G ) ∼= C[V ][G ,G ],

where the graded component of χ ∈ ∆ is given by

C[V ][G ,G ]
χ = {f ∈ C[V ][G ,G ] | γ.f = χ(γ)f for all γ ∈ G}.
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Let G ≤ GL4(C) acting on V = C4 be generated by

r =


ζ3 . . .

. ζ−1
3 . .

. . ζ−1
3 .

. . . ζ3

 and s =


. 1 . .
1 . . .
. . . 1
. . 1 .

 .

Then [G ,G ] = ⟨r⟩ ∼= C3, so Cl(V /G ) ∼= ∆ ∼= Ab(G ) = Z/2Z.

The ring R(V /G ) ∼= C[V ][G ,G ] is generated by:

In degree χ0:

x1x2, x3x4, x1x3 + x2x4, x31 + x32 , x33 + x34 , x2x
2
3 + x1x

2
4 , x22 x3 + x21 x4

In degree χ1:

x1x3 − x2x4, x31 − x32 , x33 − x34 , x2x
2
3 − x1x

2
4 , x22 x3 − x21 x4
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There is an injective graded morphism

Θ : R(X ) → R(V /G )⊗C C[Cl(X )free].

Let Cl(X )free ∼= Zm, so C[Cl(X )free] = C[t±1
1 , . . . , t±1

m ].

There are valuations vi : C[V ] \ {0} → Z coming from certain
elements of G (Ito–Reid, 1996).

Given f ∈ R(V /G ), we have

f ⊗
m∏
i=1

t
vi (f )
i ∈ im(Θ).

Aim: Find homogeneous f1, . . . , fk ∈ R(V /G ) that give rise to
generators of im(Θ).
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Assumption: m = 1, there is just one valuation v = v1.

Idea: Find special generators whose ‘initial terms’ generate the
‘initial algebra’.

We have a filtration

Fv≥a = {f ∈ C[V ] \ {0} | v(f ) ≥ a} ∪ {0}

with a ∈ Z and the associated graded algebra

grv (C[V ]) =
⊕
a∈Z

Fv≥a/Fv>a.
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Let f ∈ C[V ] \ {0} with valuation v(f ) = a.

We write inv (f ) ∈ grv (C[V ]) for the residue class of f in
Fv≥a/Fv>a.

Let f ∈ C[V ][G ,G ] \ {0} be ∆-homogeneous of degree
deg∆(f ) = χ.

We define

in∆v (f ) = inv (f )⊗ χ ∈ grv (C[V ])⊗C C∆.

Let in∆v (C[V ][G ,G ]) be the algebra generated by

{in∆v (f ) | f ∈ C[V ][G ,G ] ∆-homogeneous}.
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With G as before, we have grv (C[V ]) = C[V ] = C[x1, . . . , x4], but
with a non-standard grading.

Let y1 =
1
2(x1 + x2), y2 =

1
2(x1 − x2), y3 =

1
2(x3 + x4) and

y4 =
1
2(x3 − x4).

The ring grv (C[V ]) is generated in degree 0 and 1 via

grv (C[V ])0 = ⟨y1, y3⟩C and grv (C[V ])1 = ⟨y2, y4⟩C.

For example:

x1 = y1 + y2 =⇒ inv (x1) = y1

x1x2 = (y1 + y2)(y1 − y2) =⇒ in∆v (x1x2) = y21 ⊗ χ0
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Let B ⊆ C[V ][G ,G ] be a set of ∆-homogeneous generators of
C[V ][G ,G ] as a C-algebra.

We call B a ∆-homogeneous Khovanskii basis of C[V ][G ,G ] with
respect to v , if {in∆v (f ) | f ∈ B} generates in∆v (C[V ][G ,G ]).

Theorem (Yamagishi, 2018; Grab, 2019; S., 2024+)

Homogeneous elements f1, . . . , fk ∈ C[V ][G ,G ] give rise to
generators of im(Θ) if and only if {f1, . . . , fk} is a
∆-homogeneous Khovanskii basis of C[V ][G ,G ] with respect to v .
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(1) Let B = {f1, . . . , fk} be ∆-homogeneous generators of
C[V ][G ,G ].

(2) Compute the kernel ⟨h1, . . . , hl⟩ of the morphism

C[X1, . . . ,Xk ] → in∆v (C[V ][G ,G ]), Xi 7→ in∆v (fi ).

(3) ‘Reduce’ hi (f1, . . . , fk) with respect to B and add non-zero
remainders to B.

(4) If elements were added: go to (2), else: done.
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In the example, the given generators of C[V ][G ,G ] already form a
homogeneous Khovanskii basis.

Generators of R(X ) ⊆ C[V ]⊗ C[t±1] are given by

x1x2, x3x4, x1x3 + x2x4, x3
1 + x3

2 , x3
3 + x3

4 , x2x
2
3 + x1x

2
4 , x2

2 x3 + x2
1 x4

(x1x3 − x2x4)t, (x3
1 − x3

2 )t, (x3
3 − x3

4 )t, (x2x
2
3 − x1x

2
4 )t, (x2

2 x3 − x2
1 x4)t, t

−2

where the grading by Cl(X ) = Z is via the degree of t.
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A finite Khovanskii basis may not exists in a more general setting,
but here it does (→ MDS).

The reduction algorithm may not terminate in a more general
setting, but here it does.

Generalization to m > 1 valuations exists (MUVAK bases).

There is an algorithm, but no filtration and no reduction algorithm
available.
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There is a wall-and-chamber structure in a subcone of Rm.

Chambers =̂ isomorphism classes of Q-factorial terminalizations.

Walls give divisors D such that X (D) is not a Q-factorial
terminalization.

Namikawa, 2015: The walls come from a hyperplane arrangement
and there is a reflection group acting on this arrangement.

This requires that V /G is symplectic.
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