Fifth annual conference of the SFB-TRR 195

Towards the Classification of Symplectic Linear Quotient Singularities Admitting a Symplectic Resolution

Johannes Schmitt TU Kaiserslautern 16th September 2021 Joint work with Gwyn Bellamy and Ulrich Thiel Math. Z. (2021), to appear

- 2. The Groups in Question
- 3. Symplectic Reflection Algebras
- 4. Conclusion

Let V be a finite dimensional \mathbb{C} -vector space.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

For V symplectic define

 $\mathsf{Sp}(V) := \{g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w)\} \leq \mathsf{GL}(V)$.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

For V symplectic define $Sp(V) := \{g \in GL(V) \mid \omega(gv, gw) = \omega(v, w)\} \le GL(V) .$

Example

For
$$V = \mathbb{C}^{2n}$$
 and $\omega(v, w) := v^{\top} J_n w$ with $J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$, we have

$$\operatorname{Sp}_{2n}(\mathbb{C}) = \{g \in \operatorname{GL}_{2n}(\mathbb{C}) \mid g^{\top}J_ng = J_n\}.$$

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

For V symplectic define

 $\mathsf{Sp}(V) := \{g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w)\} \leq \mathsf{GL}(V)$.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

For V symplectic define

 $\mathsf{Sp}(V) := \{g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w)\} \leq \mathsf{GL}(V)$.

Example

Let \mathfrak{h} be a vector space. Then $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic via

$$\omega\big((v,f),(w,g)\big)=g(v)-f(w) \ .$$

For $W \leq GL(\mathfrak{h})$ the induced action on $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic.

Let V be a finite dimensional \mathbb{C} -vector space.

The space V is called symplectic if there is a bilinear form $\omega: V \times V \to \mathbb{C}$ which is non-degenerate and alternating, i.e. $\omega(v, v) = 0$ for all $v \in V$.

For V symplectic define

$$\mathsf{Sp}(V) := \{ g \in \mathsf{GL}(V) \mid \omega(gv, gw) = \omega(v, w) \} \leq \mathsf{GL}(V) \; .$$

Example

Let \mathfrak{h} be a vector space. Then $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic via

$$\omega\big((v,f),(w,g)\big)=g(v)-f(w) \ .$$

For $W \leq GL(\mathfrak{h})$ the induced action on $\mathfrak{h} \oplus \mathfrak{h}^*$ is symplectic.

Fact: $Sp(V) \leq SL(V)$.

Let $G \leq \operatorname{GL}(V)$, $|G| < \infty$.

Let
$$G \leq GL(V)$$
, $|G| < \infty$.
Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

Let
$$G \leq \operatorname{GL}(V)$$
, $|G| < \infty$.
Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

$$\begin{array}{l} \mathsf{C}_2\\ \mathsf{Let}\ \mathsf{C}_2 := \langle \left(\begin{smallmatrix} -1 & 0\\ 0 & -1 \end{smallmatrix}\right) \rangle \leq \mathsf{Sp}_2(\mathbb{C}). \ \text{Then}\\ \\ \mathbb{C}[u, v, w] / \langle uv - w^2 \rangle \cong \mathbb{C}[x, y]^{\mathsf{C}_2} \ . \end{array}$$

Let
$$G \leq \operatorname{GL}(V)$$
, $|G| < \infty$.
Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

$$\begin{array}{l} \mathsf{C}_2\\ \text{Let }\mathsf{C}_2:= \big\langle \big(\begin{smallmatrix} -1 & 0\\ 0 & -1 \end{smallmatrix}\big) \big\rangle \leq \mathsf{Sp}_2(\mathbb{C}). \ \text{Then}\\ \\ \mathbb{C}[u,v,w]/\langle uv-w^2\rangle \cong \mathbb{C}[x,y]^{\mathsf{C}_2} \ . \end{array}$$

Let
$$G \leq GL(V)$$
, $|G| < \infty$.
Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

$$\begin{array}{l} \mathsf{C}_2\\ \mathsf{Let}\ \mathsf{C}_2 := \langle \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \rangle \leq \mathsf{Sp}_2(\mathbb{C}). \ \text{Then}\\ \\ \mathbb{C}[u, v, w] / \langle uv - w^2 \rangle \cong \mathbb{C}[x, y]^{\mathsf{C}_2} \end{array}$$

Classical fact

The variety V/G is smooth if and only if G is generated by reflections, i.e. $g \in GL(V)$ with rk(g-1) = 1.

Let
$$G \leq GL(V)$$
, $|G| < \infty$.
Consider

$$V/G := \operatorname{Spec} \mathbb{C}[V]^G$$
 "=" space of orbits .

$$\begin{array}{l} \mathsf{C}_2\\ \text{Let }\mathsf{C}_2 := \langle \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \rangle \leq \mathsf{Sp}_2(\mathbb{C}). \ \text{Then}\\ \mathbb{C}[u, v, w] / \langle uv - w^2 \rangle \cong \mathbb{C}[x, y]^{\mathsf{C}_2} \end{array}$$

Classical fact

The variety V/G is smooth if and only if G is generated by reflections, i.e. $g \in GL(V)$ with rk(g-1) = 1.

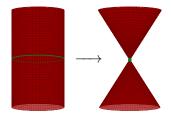
Corollary

If V is symplectic and $G \leq Sp(V)$, then V/G is singular.

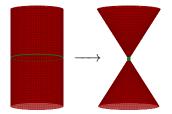
Resolutions A resolution of V/G is a smooth variety X and a proper birational morphism $X \rightarrow V/G$.

Resolutions

A resolution of V/G is a smooth variety X and a proper birational morphism $X \rightarrow V/G$.

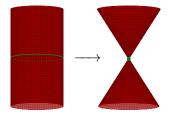


Resolutions A resolution of V/G is a smooth variety X and a proper birational morphism $X \rightarrow V/G$.



If $G \leq \operatorname{Sp}(V)$, then V/G has a symplectic structure.

Resolutions A resolution of V/G is a smooth variety X and a proper birational morphism $X \rightarrow V/G$.

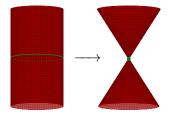


If $G \leq Sp(V)$, then V/G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V/G is a resolution $\varphi : X \to V/G$, where X is a symplectic variety and φ is an isomorphism of symplectic varieties over the smooth locus.

Resolutions A resolution of V/G is a smooth variety X and a proper birational morphism $X \rightarrow V/G$.



If $G \leq Sp(V)$, then V/G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V/G is a resolution $\varphi : X \to V/G$, where X is a symplectic variety and φ is an isomorphism of symplectic varieties over the smooth locus.

In general, those do not exist!

Classification problem

Classify all $G \leq \text{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

Classification problem

Classify all $G \leq \text{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G) .

Classification problem

Classify all $G \leq \text{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G).

dim V = 2If $G \leq SL_2(\mathbb{C})$, then there is always a symplectic resolution. \rightarrow "Kleinian singularities"

Classification problem

Classify all $G \leq \text{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

We only need to consider irreducible tuples (V, ω, G).

Theorem (Verbitsky, 2000)

If V/G admits a symplectic resolution, then G is generated by symplectic reflections, i.e. $g \in G$ with rk(g - 1) = 2.

Classification problem

Classify all $G \leq \text{Sp}(V)$ for which V/G admits a (projective) symplectic resolution.

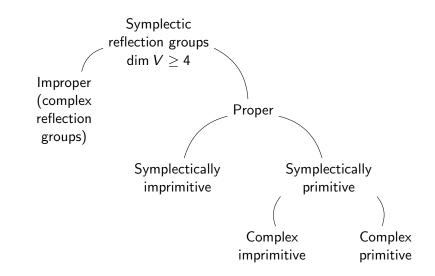
We only need to consider irreducible tuples (V, ω, G).

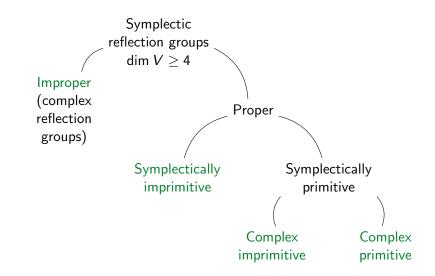
Theorem (Verbitsky, 2000)

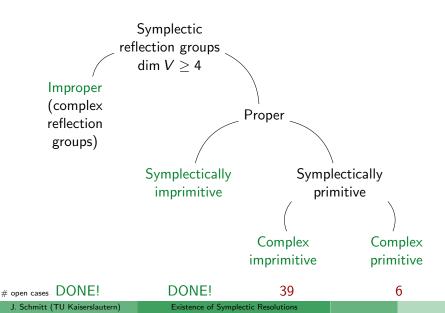
If V/G admits a symplectic resolution, then G is generated by symplectic reflections, i.e. $g \in G$ with rk(g - 1) = 2.

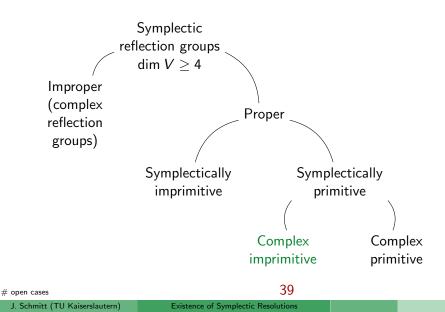
Example

Let $W \leq GL(\mathfrak{h})$ be a complex reflection group. Then $W \leq Sp(\mathfrak{h} \oplus \mathfrak{h}^*)$ is a symplectic reflection group.









2. The Groups in Question

- 3. Symplectic Reflection Algebras
- 4. Conclusion

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition V = V₁ ⊕ · · · ⊕ V_k into symplectic subspaces such that for any g ∈ G and any i there is j with g(V_i) = V_j;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition V = V₁ ⊕ · · · ⊕ V_k into symplectic subspaces such that for any g ∈ G and any i there is j with g(V_i) = V_j;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

For these groups we have dim V = 4 (Cohen, 1980), so we may assume $V = \mathbb{C}^4$.

Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

- symplectically primitive, so there is **no** non-trivial decomposition V = V₁ ⊕ · · · ⊕ V_k into symplectic subspaces such that for any g ∈ G and any i there is j with g(V_i) = V_j;
- complex imprimitive, so there exists such a decomposition into (not necessarily symplectic) subspaces.

For these groups we have dim V = 4 (Cohen, 1980), so we may assume $V = \mathbb{C}^4$.

Four infinite families of groups $H \leq GL_2(\mathbb{C})$, e.g. $\mu_{6d}T$, $d \in \mathbb{Z}_{\geq 1}$, leading to $E(H) \leq Sp_4(\mathbb{C})$ generated by

$$h^{\vee} := \begin{pmatrix} h & 0 \\ 0 & (h^{\top})^{-1} \end{pmatrix}$$
 for $h \in H$, and $s := \begin{pmatrix} & -1 \\ 1 & & \end{pmatrix}$.

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Lemma

Any E(H) contains a dihedral group D_d as normal subgroup.

Subgroup Structures

Let $H_0 \leq H$ be the largest complex reflection subgroup.

Lemma

The group H_0 is primitive (e.g. G_5 for $H = \mu_6 T$) and H_0^{\vee} is a normal subgroup of E(H).

Lemma

Any E(H) contains a dihedral group D_d as normal subgroup.

Write $\mathcal{S}(G) \subseteq G$ for the subset of symplectic reflections.

Lemma

We have $\mathcal{S}(E(H)) = \mathcal{S}(H_0^{\vee}) \stackrel{.}{\cup} \mathcal{S}(D_d)$, stable under E(H)-conjugacy.

- 1. The Classification Problem
- 2. The Groups in Question

4. Conclusion

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_c(V, G)$.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_c(V, G)$.

Technical detail

Here $c : \mathcal{S}(G) \to \mathbb{C}$ is a *G*-conjugacy invariant function.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_c(V, G)$.

Technical detail

Here $c:\mathcal{S}({\mathcal{G}})\to \mathbb{C}$ is a G-conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V/G admits a symplectic resolution, then there exists c such that dim S = |G| for all irreducible $H_c(V, G)$ -modules S.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_c(V, G)$.

Technical detail Here $c : S(G) \to \mathbb{C}$ is a *G*-conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V/G admits a symplectic resolution, then there exists c such that dim S = |G| for all irreducible $H_c(V, G)$ -modules S.

Strategy

Find for all c an irreducible $H_c(V, G)$ -module S with dim $S \neq |G|$.

Deep link to representation theory: Consider deformations of $\mathbb{C}[V] \rtimes G$, called the symplectic reflection algebras $H_c(V, G)$.

Technical detail Here $c : \mathcal{S}(G) \to \mathbb{C}$ is a *G*-conjugacy invariant function.

Etingof-Ginzburg, 2002; Ginzburg-Kaledin, 2004

If V/G admits a symplectic resolution, then there exists c such that dim S = |G| for all irreducible $H_c(V, G)$ -modules S.

Strategy

Find for all c an irreducible $H_c(V, G)$ -module S with dim $S \neq |G|$.

The same strategy was already used for the "improper" symplectic reflection groups.

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \cup S(D_d)$, stable under E(H)-conjugacy.

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \cup S(D_d)$, stable under E(H)-conjugacy.

That means we can "split up" c into two parameters

$$\mathsf{c}_1:\mathcal{S}(H_0^ee) o\mathbb{C}$$
 and $\mathsf{c}_2:\mathcal{S}(D_d) o\mathbb{C}$

Subalgebras

Recall the Lemma:

Lemma

We have $S(E(H)) = S(H_0^{\vee}) \cup S(D_d)$, stable under E(H)-conjugacy.

That means we can "split up" c into two parameters

$$\mathsf{c}_1:\mathcal{S}(H_0^ee) o\mathbb{C}$$
 and $\mathsf{c}_2:\mathcal{S}(D_d) o\mathbb{C}$

This gives (sub)algebras

 $\mathsf{H}_{\mathsf{c}_1}(H_0^{\vee}) \subseteq \mathsf{H}_{\mathsf{c}_1}(H^{\vee}) \subseteq \mathsf{H}_{\mathsf{c}_1}(E(H)) \leftrightsquigarrow \mathsf{H}_{\mathsf{c}}(E(H)) \nleftrightarrow \mathsf{H}_{\mathsf{c}_2}(D_d) \ .$

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ Ş $H_{c}(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ $H_{c}(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ $H_{c}(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M = 2 \dim L$.

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ $H_c(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M = 2 \dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are c₂-rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ $H_{c}(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M = 2 \dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are c₂-rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

 $H_{c_1}(H_0^{\vee})$ $|\cap$ $H_{c_1}(H^{\vee})$ $|\cap$ $H_{c_1}(E(H))$ $H_{c}(E(H))$ Ş $H_{c_2}(D_d)$

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M = 2 \dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are c₂-rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

For $\lambda \in Irr(H)$, we have $\lambda|_{H_0} \in Irr(H_0)$ giving rise to a simple $H_{c_1}(H_0^{\vee})$ -module $L(\lambda|_{H_0})$ with dim $L(\lambda|_{H_0}) \leq |H_0|$.

Remember: We want to construct an $H_c(E(H))$ -module of dimension $\neq |E(H)|$.

Step 1: Reduction to $H_{c_1}(H^{\vee})$ and D_d .

We can induce any simple $H_{c_1}(H^{\vee})$ -module L to an $H_{c_1}(E(H))$ -module M with dim $M = 2 \dim L$.

Theorem

This is an $H_c(E(H))$ -module if and only if all the constituents of $M|_{D_d}$ are c₂-rigid, i.e. if they are isomorphic to a simple $H_{c_2}(D_d)$ -module.

Step 2: Reduction to H_0 .

For $\lambda \in Irr(H)$, we have $\lambda|_{H_0} \in Irr(H_0)$ giving rise to a simple $H_{c_1}(H_0^{\vee})$ -module $L(\lambda|_{H_0})$ with dim $L(\lambda|_{H_0}) \leq |H_0|$.

Lemma

The module $L(\lambda|_{H_0})$ is a simple $H_{c_1}(H^{\vee})$ -module as well.

- 1. The Classification Problem
- 2. The Groups in Question
- 3. Symplectic Reflection Algebras
- 4. Conclusion

Conclusion

We can construct an $H_c(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is c₂-rigid and $H_0 \lneq H$.

Conclusion

We can construct an $H_c(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is c₂-rigid and $H_0 \leq H$.

Theorem

Such a module exists except in possibly 73 cases.

Conclusion

We can construct an $H_c(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is c₂-rigid and $H_0 \leq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the $\rm MAGMA$ -package $\rm CHAMP$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Conclusion

We can construct an $H_c(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is c₂-rigid and $H_0 \leq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the $\rm MAGMA$ -package $\rm CHAMP$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem

Such a module exists except in possibly 39 cases. In at least 18 of them no such module exists.

Conclusion

We can construct an $H_c(E(H))$ -module M with dim M < |E(H)|, if we can find λ such that $L(\lambda|_{H_0})|_{D_d}$ is c₂-rigid and $H_0 \leq H$.

Theorem

Such a module exists except in possibly 73 cases.

Using the $\rm MAGMA$ -package $\rm CHAMP$ (Thiel, 2013) we can improve those theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem

Such a module exists except in possibly 39 cases. In at least 18 of them no such module exists.

Final result (so far)

Let $G \leq \operatorname{Sp}(V)$ be a symplectically primitive complex imprimitive symplectic reflection group. Then the corresponding quotient V/G does not admit a symplectic resolution except in possibly 39 cases.