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Let V be a finite dimensional C-vector space.

The space V is called symplectic if there is a bilinear form
ω : V × V → C which is non-degenerate and alternating, i.e.
ω(v , v) = 0 for all v ∈ V .

For V symplectic define

Sp(V ) := {g ∈ GL(V ) | ω(gv , gw) = ω(v ,w)} ≤ GL(V ) .

Example

Let h be a vector space. Then h⊕ h∗ is symplectic via

ω
(
(v , f ), (w , g)

)
= g(v)− f (w) .

For W ≤ GL(h) the induced action on h⊕ h∗ is symplectic.

Fact: Sp(V ) ≤ SL(V ).
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Let G ≤ GL(V ), |G | <∞.

Consider

V /G := SpecC[V ]G “=” space of orbits .

C2

Let C2 :=
〈(−1 0

0 −1
)〉
≤ Sp2(C). Then

C[u, v ,w ]/〈uv − w2〉 ∼= C[x , y ]C2 .

Classical fact
The variety V /G is smooth if and only if G is
generated by reflections, i.e. g ∈ GL(V ) with
rk(g − 1) = 1.

Corollary

If V is symplectic and G ≤ Sp(V ), then V /G is singular.
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Resolutions
A resolution of V /G is a smooth variety
X and a proper birational morphism
X → V /G .

−−→

If G ≤ Sp(V ), then V /G has a symplectic structure.

Symplectic resolutions (Beauville, 2000)

A symplectic resolution of V /G is a resolution ϕ : X → V /G ,
where X is a symplectic variety and ϕ is an isomorphism of
symplectic varieties over the smooth locus.

In general, those do not exist!
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Symplectically Primitive, Complex Imprimitive Groups

We consider groups G which are

• symplectically primitive, so there is no non-trivial
decomposition V = V1 ⊕ · · · ⊕ Vk into symplectic subspaces
such that for any g ∈ G and any i there is j with g(Vi ) = Vj ;

• complex imprimitive, so there exists such a decomposition into
(not necessarily symplectic) subspaces.

For these groups we have dimV = 4 (Cohen, 1980), so we may
assume V = C4.

Four infinite families of groups H ≤ GL2(C), e.g. µ6dT, d ∈ Z≥1,
leading to E (H) ≤ Sp4(C) generated by

h∨ :=
(

h 0
0 (h>)−1

)
for h ∈ H, and s :=

(
1

−1
−1

1

)
.
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Subgroup Structures

Let H0 ≤ H be the largest complex reflection subgroup.

Lemma
The group H0 is primitive (e.g. G5 for H = µ6T) and H∨0 is a
normal subgroup of E (H).

Lemma
Any E (H) contains a dihedral group Dd as normal subgroup.

Write S(G ) ⊆ G for the subset of symplectic reflections.

Lemma
We have S(E (H)) = S(H∨0 ) ∪̇ S(Dd), stable under
E (H)-conjugacy.
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Symplectic Reflection Algebras

Deep link to representation theory:
Consider deformations of C[V ]o G , called the symplectic
reflection algebras Hc(V ,G ).

Technical detail
Here c : S(G )→ C is a G -conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V /G admits a symplectic resolution, then there exists c such
that dim S = |G | for all irreducible Hc(V ,G )-modules S .

Strategy

Find for all c an irreducible Hc(V ,G )-module S with dim S 6= |G |.

The same strategy was already used for the “improper” symplectic
reflection groups.

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Symplectic Reflection Algebras

Deep link to representation theory:
Consider deformations of C[V ]o G , called the symplectic
reflection algebras Hc(V ,G ).

Technical detail
Here c : S(G )→ C is a G -conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V /G admits a symplectic resolution, then there exists c such
that dim S = |G | for all irreducible Hc(V ,G )-modules S .

Strategy

Find for all c an irreducible Hc(V ,G )-module S with dim S 6= |G |.

The same strategy was already used for the “improper” symplectic
reflection groups.

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Symplectic Reflection Algebras

Deep link to representation theory:
Consider deformations of C[V ]o G , called the symplectic
reflection algebras Hc(V ,G ).

Technical detail
Here c : S(G )→ C is a G -conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V /G admits a symplectic resolution, then there exists c such
that dim S = |G | for all irreducible Hc(V ,G )-modules S .

Strategy

Find for all c an irreducible Hc(V ,G )-module S with dim S 6= |G |.

The same strategy was already used for the “improper” symplectic
reflection groups.

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Symplectic Reflection Algebras

Deep link to representation theory:
Consider deformations of C[V ]o G , called the symplectic
reflection algebras Hc(V ,G ).

Technical detail
Here c : S(G )→ C is a G -conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V /G admits a symplectic resolution, then there exists c such
that dim S = |G | for all irreducible Hc(V ,G )-modules S .

Strategy

Find for all c an irreducible Hc(V ,G )-module S with dim S 6= |G |.

The same strategy was already used for the “improper” symplectic
reflection groups.

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Symplectic Reflection Algebras

Deep link to representation theory:
Consider deformations of C[V ]o G , called the symplectic
reflection algebras Hc(V ,G ).

Technical detail
Here c : S(G )→ C is a G -conjugacy invariant function.

Etingof–Ginzburg, 2002; Ginzburg–Kaledin, 2004

If V /G admits a symplectic resolution, then there exists c such
that dim S = |G | for all irreducible Hc(V ,G )-modules S .

Strategy

Find for all c an irreducible Hc(V ,G )-module S with dim S 6= |G |.

The same strategy was already used for the “improper” symplectic
reflection groups.

J. Schmitt (TU Kaiserslautern) Existence of Symplectic Resolutions



Subalgebras

Recall the Lemma:

Lemma
We have S(E (H)) = S(H∨0 ) ∪̇ S(Dd), stable under
E (H)-conjugacy.

That means we can “split up” c into two parameters

c1 : S(H∨0 )→ C and c2 : S(Dd)→ C .

This gives (sub)algebras

Hc1(H∨0 ) ⊆ Hc1(H∨) ⊆ Hc1(E (H)) ! Hc(E (H)) ! Hc2(Dd) .
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Construction of the Module

Remember: We want to construct an Hc(E (H))-module
of dimension 6= |E (H)|.
Step 1: Reduction to Hc1(H∨) and Dd .

We can induce any simple Hc1(H∨)-module L to an
Hc1(E (H))-module M with dimM = 2 dim L.

Theorem
This is an Hc(E (H))-module if and only if all the
constituents of M|Dd

are c2-rigid, i.e. if they are
isomorphic to a simple Hc2(Dd)-module.

Step 2: Reduction to H0.

For λ ∈ Irr(H), we have λ|H0 ∈ Irr(H0) giving rise to a simple
Hc1(H∨0 )-module L(λ|H0) with dim L(λ|H0) ≤ |H0|.
Lemma
The module L(λ|H0) is a simple Hc1(H∨)-module as well.
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Results

Conclusion
We can construct an Hc(E (H))-module M with dimM < |E (H)|,
if we can find λ such that L(λ|H0)|Dd

is c2-rigid and H0 � H.

Theorem
Such a module exists except in possibly 73 cases.

Using the Magma-package Champ (Thiel, 2013) we can improve
those theoretical bounds and obtain sharp bounds in many cases:

Refined Theorem
Such a module exists except in possibly 39 cases. In at least 18 of
them no such module exists.

Final result (so far)

Let G ≤ Sp(V ) be a symplectically primitive complex imprimitive
symplectic reflection group. Then the corresponding quotient
V /G does not admit a symplectic resolution except in possibly 39
cases.
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