Spring School: Group Actions and Symplectic Singularities Université de Lille

On the algorithmic construction of symplectic resolutions of quotient singularities

Johannes Schmitt Ruhr-Universität Bochum 3rd June 2025

Mori dream spaces and Cox rings

An algorithm for $\mathcal{R}(X)$

- V: symplectic $\mathbb C\text{-vector space, }\dim(V)=n<\infty$
- $G \leq \operatorname{Sp}(V)$: finite group

Fact: The linear quotient V/G is a symplectic variety (Beauville, 2000).

Let $\varphi: X \to V/G$ be a (projective) symplectic Might not exist. resolution.

Let $\varphi: X \to V/G$ be a Q-factorial Exists (BCHM, 2010). terminalization.

Question: Can we construct $X \rightarrow V/G$ algorithmically?

Why? + Some history

New tool to check existence of a symplectic resolution

Special case of 'programming the minimal model programme' (Lazić, 2024)

Donten-Bury–Wiśniewski, 2017: Construction of all symplectic resolutions of V/G with $G = Q_8 \rtimes_{\mathbb{Z}/2\mathbb{Z}} D_8$

Mori dream spaces and Cox rings

An algorithm for $\mathcal{R}(X)$

Mori dream spaces and Cox rings

In the following: $\varphi: X \to V/G$ symplectic resolution (or a \mathbb{Q} -factorial terminalization)

Proposition (Namikawa, 2015) The variety X is a relative Mori dream space over V/G.

Equivalently: The Cox ring $\mathcal{R}(X)$ is a finitely generated \mathbb{C} -algebra.

Assume that Cl(X) is free. The Cox ring of X is the algebra

$$\mathcal{R}(X) = \bigoplus_{[D] \in \mathsf{Cl}(X)} \Gamma(X, \mathcal{O}_X(D)).$$

Example $\mathcal{R}(\mathbb{P}^n) = \mathbb{C}[x_0, \dots, x_n]$ with the standard grading.

GIT quotients (algebraic version)

Given a $D \in Div(X)$, we obtain a positively graded algebra

$$S(D) = \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Gamma(X, \mathcal{O}_X(kD))$$

and the variety $X(D) = \operatorname{Proj} S(D)$.

For some D (ample), we have $X(D) \cong X$.

There are only finitely many symplectic resolutions of V/G up to isomorphism.

All symplectic resolutions V/G arise in this way.

How to construct X:

- (1) Compute $\mathcal{R}(X)$ (without knowing X!)
- (2) Find a good $D \in Div(X)$
- (3) Compute S(D)

Mori dream spaces and Cox rings

An algorithm for $\mathcal{R}(X)$

An embedding

Proposition (Grab, 2019)

There is an injective graded morphism

$$\Theta: \mathcal{R}(X)
ightarrow \mathcal{R}(V/G) \otimes_{\mathbb{C}} \mathbb{C}[\mathsf{Cl}(X)^{\mathsf{free}}].$$

Fact: We have $Cl(V/G) \cong Hom(G, \mathbb{C}^{\times})(=\Delta)$ (Benson, 1993).

Theorem (Arzhantsev–Gaĭfullin, 2010) There is a graded isomorphism

$$\mathcal{R}(V/G) \cong \mathbb{C}[V]^{[G,G]},$$

where the graded component of $\chi \in \Delta$ is given by

$$\mathbb{C}[V]^{[\mathcal{G},\mathcal{G}]}_{\chi} = \{ f \in \mathbb{C}[V]^{[\mathcal{G},\mathcal{G}]} \mid \gamma.f = \chi(\gamma)f \text{ for all } \gamma \in \mathcal{G} \}.$$

Example

Let $G \leq \operatorname{Sp}_4(\mathbb{C})$ acting on $V = \mathbb{C}^4$ be generated by

$$r = \begin{pmatrix} \zeta_3 & \cdot & \cdot & \cdot \\ \cdot & \zeta_3^{-1} & \cdot & \cdot \\ \cdot & \cdot & \zeta_3^{-1} & \cdot \\ \cdot & \cdot & \cdot & \zeta_3 \end{pmatrix} \text{ and } s = \begin{pmatrix} \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \end{pmatrix}$$

Then $[G, G] = \langle r \rangle \cong C_3$, so $Cl(V/G) \cong \Delta \cong Ab(G) = \mathbb{Z}/2\mathbb{Z}$. The ring $\mathcal{R}(V/G) \cong \mathbb{C}[V]^{[G,G]}$ is generated by: In degree χ_0 :

 $x_1x_2, \ x_3x_4, \ x_1x_3+x_2x_4, \ x_1^3+x_2^3, \ x_3^3+x_4^3, \ x_2x_3^2+x_1x_4^2, \ x_2^2x_3+x_1^2x_4$

In degree χ_1 :

$$x_1x_3 - x_2x_4, \ x_1^3 - x_2^3, \ x_3^3 - x_4^3, \ x_2x_3^2 - x_1x_4^2, \ x_2^2x_3 - x_1^2x_4$$

What G knows

An element $g \in G$ is a symplectic reflection, if g has exactly two eigenvalues $\neq 1$.

Proposition (S., 2024)

Let $H \leq G$ be generated by the symplectic reflections in G and let m be the number of conjugacy classes of symplectic reflections in G. Then

 $\operatorname{Cl}(X) \cong \mathbb{Z}^m \oplus \operatorname{Hom}(G/H, \mathbb{C}^{\times})$.

Theorem 'McKay correspondence' (Ito-Reid, 1996) Every conjugacy class of symplectic reflections defines a valuation $v : \mathbb{C}[V] \setminus \{0\} \to \mathbb{Z}$. These valuations correspond one-to-one to divisorial valuations on X.

Example

The group $G = \langle r, s \rangle$ is a symplectic reflection group, generated by s and rs.

 \implies H = G and Hom $(G/H, \mathbb{C}^{\times})$ is trivial.

There is one conjugacy class of symplectic reflections (for example, $r(rs)r^{-1} = s$).

 $\implies m = 1 \text{ and } Cl(X) \cong \mathbb{Z}.$

For the corresponding valuation v, we have for example $v(x_1 + x_2) = 0$ and $v(x_1 - x_2) = 1$.

There is an injective graded morphism

$$\Theta: \mathcal{R}(X)
ightarrow \mathcal{R}(V/\mathcal{G}) \otimes_{\mathbb{C}} \mathbb{C}[\mathsf{Cl}(X)^{\mathsf{free}}].$$

Let $Cl(X)^{\text{free}} \cong \mathbb{Z}^m$, so $\mathbb{C}[Cl(X)^{\text{free}}] = \mathbb{C}[t_1^{\pm 1}, \dots, t_m^{\pm 1}]$ and we have the valuations v_1, \dots, v_m .

Given $f \in \mathcal{R}(V/G)$, we have

$$f\otimes\prod_{i=1}^m t_i^{v_i(f)}\in {\sf im}(\Theta).$$

Theorem (Yamagishi, 2018; Grab, 2019; S., 2024+) Homogeneous elements $f_1, \ldots, f_k \in \mathcal{R}(V/G)$ give rise to generators of im(Θ) if and only if $\{f_1, \ldots, f_k\}$ is a Δ -homogeneous Khovanskii basis (or MUVAK basis) of $\mathcal{R}(V/G)$ with respect to v_1, \ldots, v_m .

Homogeneous Khovanskii bases

Idea: Special generators whose 'initial terms' generate the 'initial algebra'.

m = 1: Khovanskii basis m > 1: MUVAK basis

A finite Khovanskii basis may not exist in a more general setting, but here it does (\rightarrow MDS).

There is an algorithm.

In the example, the given generators of $\mathbb{C}[V]^{[G,G]}$ already form a homogeneous Khovanskii basis.

Generators of $\mathcal{R}(X) \subseteq \mathbb{C}[V] \otimes \mathbb{C}[t^{\pm 1}]$ are given by

 $\begin{array}{l} x_1x_2, \ x_3x_4, \ x_1x_3+x_2x_4, \ x_1^3+x_2^3, \ x_3^3+x_4^3, \ x_2x_3^2+x_1x_4^2, \ x_2^2x_3+x_1^2x_4 \\ (x_1x_3-x_2x_4)t, \ (x_1^3-x_2^3)t, \ (x_3^3-x_4^3)t, \ (x_2x_3^2-x_1x_4^2)t, \ (x_2^2x_3-x_1^2x_4)t, t^{-2} \end{array}$

where the grading by $Cl(X) = \mathbb{Z}$ is via the degree of t.

Mori dream spaces and Cox rings

An algorithm for $\mathcal{R}(X)$

How to construct X:

- (1) Compute $\mathcal{R}(X)$ (without knowing X!)
- (2) Find a good $D \in Div(X)$
- (3) Compute S(D)

Namikawa's hyperplanes

There is a wall-and-chamber structure in a subcone of \mathbb{R}^m .

Chambers $\hat{=}$ isomorphism classes of \mathbb{Q} -factorial terminalizations.

Walls give divisors D such that X(D) is not a \mathbb{Q} -factorial terminalization.

Namikawa, 2015: The walls come from a hyperplane arrangement and there is a reflection group acting on this arrangement.

This requires that V/G is symplectic.