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Let V be a right vector space over H, dim(V ) = n < ∞.

A matrix g ∈ GL(V ) of finite order is a reflection if g fixes a
hyperplane.

A finite group G ≤ GL(V ) is a (quaternionic) reflection group if G
is generated by reflections.

Examples

• V = H and any finite subgroup of H×, for example, Q8

• Sn acting on Hn by permuting a basis

• V = Hn and K ≀ Sn with K ≤ H× finite
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The reflection arrangement of G is the set

AG = {Fix(g) | g ∈ G reflection}.
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H∗(M(AG );Q) for G an irreducible quaternionic reflection
group



Cohomology

Johannes Schmitt (RUB) Quaternionic reflection arrangements 3

Goal: Study the (singular, rational) cohomology of the
complement space

M(AG ) := V \ AG .

• H∗(M(AG );Q) is a finite-dimensional, graded Q-algebra

• H i (M(AG );Q) = 0 if i < 0, i > 3n or 3 ∤ i

• Griffeth–Guevara (2025) compute the Poincaré polynomial of
H∗(M(AG );Q) for G an irreducible quaternionic reflection
group

• Cadegan-Schlieper (2018): “Orlik–Solomon presentation”

H∗(M(AG );Q) ∼= Λ(Qm)/I

with m = |AG | and I comes from dependency relations in AG
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The group G acts on AG via g .Fix(r) = Fix(grg−1).

This induces an action of G on H∗(M(AG );Q).

Precise goal: Determine the Poincaré polynomial of the invariants

H∗(M(AG );Q)G ∼= H∗(M(AG )/G ;Q)

for all quaternionic reflection groups:

P(AG ,G ; t) =
3n∑
i=0

dimQ(H
i (M(AG );Q)G )t i .

For real reflection groups: Brieskorn (1973)

For complex reflection groups: Lehrer (2004), Callegaro–Marin
(2014), Marin (2017), and Douglass–Pfeiffer–Röhrle (2025)
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It suffices to consider quaternionically irreducible groups.

(There are no V = V1 ⊕ V2, Vi ̸= 0, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

• Complex reflection groups (Shephard–Todd, 1954)

• Imprimitive groups: K ≀ Sn with K ≤ H× finite and certain
normal subgroups of these

• 13 exceptional groups with 2 ≤ dim(V ) ≤ 5

• Several infinite families in dimension 2

Lemma
If dim(V ) = 2 and G acts on AG with k orbits, then

P(AG ,G ; t) = 1 + kt3 + (k − 1)t6.
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A subgroup H ≤ G is called parabolic if H = StabG (U)
for some subspace U ≤ V .

Theorem (Steinberg, 1964; Bellamy–S.–Thiel, 2023)

Parabolic subgroups of reflection groups are reflection groups.

Let Xk be a set of representatives of the conjugacy classes of
parabolic subgroups of G of degree k.

Proposition

We have

H3k(M(AG );Q)G ∼=
⊕
P∈Xk

H3k(M(AP);Q)NG (P)

as QG -modules.
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Let n ≥ 1, K ≤ H× finite and [K ,K ] ≤ H ≤ K .

Gn(K ,H) :=

{(
k1

. . .
kn

)
σ

∣∣∣∣∣ ki ∈ K , σ ∈ Sn,
k1 · · · kn ∈ H

}
≤ GLn(H).

• For n ≥ 3, all imprimitive irreducible quaternionic reflection
groups are of this form (Cohen, 1980)

• Options for K : 2 infinite series + 3 more groups

• K cyclic =⇒ Gn(K ,H) is a complex reflection group:
Gn(Cm,Cm/p) = G (m, p, n)

• H ̸= {1} =⇒ the lattice of parabolic subgroups is the Dowling
lattice of K
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Theorem
Let G = Gn(K ,H) with K not cyclic. Then we have

P(AG ,G ; t) = 1 + 2t3 + · · ·+ 2t3n−6 + at3n−3 + (a− 1)t3n

with

a =


3, [K : H] and n are even and K/H is cyclic,

5, [K : H] and n are even and K/H is not cyclic,

2, otherwise.
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Compute P(AG ,G ; t) explicitly with OSCAR using a
“non-broken circuit basis” of H∗(M(AG );Q).

Algorithms by Bishop–Douglass–Pfeiffer–Röhrle, 2013;
Cordovil–Etienne, 2001

G n P(AG ,G ; t)

W (Q) 3 1 + t3

W (R) 3 1 + t3

W (S1) 4 1 + t3 + t9 + t12

W (S2) 4 1 + t3 + t9 + t12

W (S3) 4 1 + t3 + t9 + t12

W (T ) 4 1 + t3 + t9 + t12

W (U) 5 1 + t3 + t12 + t15


