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Let V be a right vector space over H, dim(V) = n < 0. é

A matrix g € GL(V) of finite order is a reflection if g fixes a é
hyperplane.

A finite group G < GL(V) is a (quaternionic) reflection group if G
is generated by reflections.

Examples
e V = H and any finite subgroup of H*, for example, Qg
® S, acting on H" by permuting a basis

e V=H"and K15, with K <H* finite
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Example

G = (1 S, (Coxeter group of type By)
Reflections in G:

)0 )66

The reflection arrangement of G is the set

Ac = {Fix(g) | g € G reflection}.
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* Cohomology

Goal: Study the (singular, rational) cohomology of the é
complement space
M(.AG) =V \ .AG.
® H*(M(Ag); Q) is a finite-dimensional, graded Q-algebra
e H(M(Ag);Q)=0ifi<0,i>3nor3fi

e Griffeth—Guevara (2025) compute the Poincaré polynomial of
H*(M(Ag); Q) for G an irreducible quaternionic reflection

group
e Cadegan-Schlieper (2018): “Orlik—Solomon presentation”
H*(M(Ag); Q) = NQ™)/1

with m = | Ag| and | comes from dependency relations in Ag
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* Cohomology

The group G acts on Ag via g.Fix(r) = Fix(grg™1).
This induces an action of G on H*(M(Ag); Q). é

Precise goal: Determine the Poincaré polynomial of the invariants
H*(M(Ac); Q)¢ = H*(M(Ag)/G; Q)

for all quaternionic reflection groups:
P(Ag, G; t) ZdlmQ(H Ag); Q)°)t.

For real reflection groups: Brieskorn (1973)

For complex reflection groups: Lehrer (2004), Callegaro—Marin
(2014), Marin (2017), and Douglass—Pfeiffer—Rohrle (2025)

~ Johannes Schmitt (RUB) ~~ Quaternionic reflection arrangements 4



*A list of groups







*A list of groups

It suffices to consider quaternionically irreducible groups. ‘
(There are no V = Vi @ V,, Vi # 0, left invariant by G.) é




*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.)

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)



*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.)

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)
e Complex reflection groups (Shephard—Todd, 1954)



*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.) é

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)
e Complex reflection groups (Shephard—Todd, 1954)
® Imprimitive groups: K1 S, with K <H* finite and certain
normal subgroups of these



*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.)

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)
e Complex reflection groups (Shephard—Todd, 1954)

® Imprimitive groups: K1 S, with K <H* finite and certain
normal subgroups of these

® 13 exceptional groups with 2 < dim(V) <5




*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.)

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)
e Complex reflection groups (Shephard—Todd, 1954)

® Imprimitive groups: K1 S, with K <H* finite and certain
normal subgroups of these

® 13 exceptional groups with 2 < dim(V) <5

® Several infinite families in dimension 2



*A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no V = Vi @ V,, Vi # 0, left invariant by G.)

Classification of irreducible quaternionic reflection groups
Cohen (1980), Taylor (2025), Waldron (2025)
e Complex reflection groups (Shephard—Todd, 1954)

® Imprimitive groups: K1 S, with K <H* finite and certain
normal subgroups of these

® 13 exceptional groups with 2 < dim(V) <5
® Several infinite families in dimension 2

Lemma
If dim(V) =2 and G acts on Ag with k orbits, then

P(Ag, G;t) = 1+ kt> + (k — 1)¢°.
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* Have you tried induction?

A subgroup H < G is called parabolic if H = Stabg(U) é
for some subspace U < V.

Theorem (Steinberg, 1964; Bellamy—S.—Thiel, 2023)

Parabolic subgroups of reflection groups are reflection groups.

Let Xi be a set of representatives of the conjugacy classes of
parabolic subgroups of G of degree k.

Proposition
We have

H3k(l\/l(.Ag);Q)G I~ @ H3k(M(AP);Q)NG(P)

Pe Xy

as QG-modules.
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* The imprimitive groups

Let n> 1, K < H* finite and [K, K] < H < K.

k1
Gn(K, H) = {( )a
kn

For n > 3, all imprimitive irreducible quaternionic reflection
groups are of this form (Cohen, 1980)

kie K,oeS,,
kl"'kn c H } < GL”(H)

Options for K: 2 infinite series + 3 more groups

K cyclic = G,(K, H) is a complex reflection group:
Gn(Cm’ Cm/p) = G(m7p> n)

H # {1} = the lattice of parabolic subgroups is the Dowling
lattice of K
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Theorem
Let G = Gh(K, H) with K not cyclic. Then we have

P(AG,G;t) = 14283 4+ 263" 0 4 a3 4 (3 — 1)>"
with

3, [K:H]and nare even and K/H is cyclic,
a= b5, [K:H]and nareevenand K/H is not cyclic,
2

, otherwise.
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*Results (exceptional groups)

Compute P(Ag, G; t) explicitly with OSCAR using a
“non-broken circuit basis” of H*(M(Ag); Q). Q
Algorithms by Bishop—Douglass—Pfeiffer—Rohrle, 2013;
Cordovil-Etienne, 2001

G n P(Ag, G;t)
w(Q) 3 1+¢6

W(R) 3 14183

W(S1) 4 1463+ 1%+ ¢12
W(S) 4 1463+ t%+¢12
W(S3) 4 143+ ¢ +t12
W(T) 4 1463+ 1%+¢12
W (U) 5 1+ t3+¢12 4 ¢15




