

Invariants in the cohomology of the complement of quaternionic reflection arrangements

Johannes Schmitt
Ruhr-Universität Bochum
5th December 2025

Joint with
L. Giordani & G. Röhrle

Quaternionic reflection groups

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

A finite group $G \leq \mathrm{GL}(V)$ is a **(quaternionic) reflection group** if G is generated by reflections.

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

A finite group $G \leq \mathrm{GL}(V)$ is a **(quaternionic) reflection group** if G is generated by reflections.

Examples

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

A finite group $G \leq \mathrm{GL}(V)$ is a **(quaternionic) reflection group** if G is generated by reflections.

Examples

- $V = \mathbb{H}$ and any finite subgroup of \mathbb{H}^\times , for example, Q_8

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

A finite group $G \leq \mathrm{GL}(V)$ is a **(quaternionic) reflection group** if G is generated by reflections.

Examples

- $V = \mathbb{H}$ and any finite subgroup of \mathbb{H}^\times , for example, Q_8
- S_n acting on \mathbb{H}^n by permuting a basis

Quaternionic reflection groups

Let V be a right vector space over \mathbb{H} , $\dim(V) = n < \infty$.

A matrix $g \in \mathrm{GL}(V)$ of finite order is a **reflection** if g fixes a hyperplane.

A finite group $G \leq \mathrm{GL}(V)$ is a **(quaternionic) reflection group** if G is generated by reflections.

Examples

- $V = \mathbb{H}$ and any finite subgroup of \mathbb{H}^\times , for example, Q_8
- S_n acting on \mathbb{H}^n by permuting a basis
- $V = \mathbb{H}^n$ and $K \wr S_n$ with $K \leq \mathbb{H}^\times$ finite

Reflection arrangements

Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$

Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$

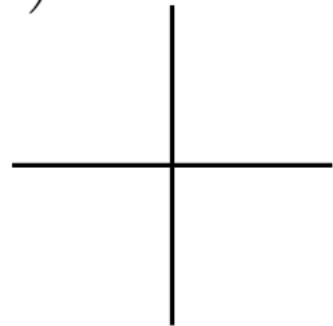
Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$



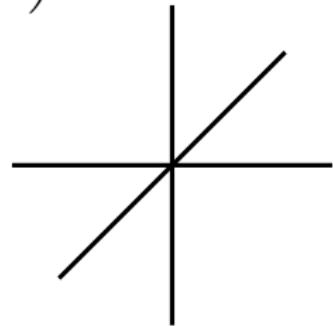
Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$



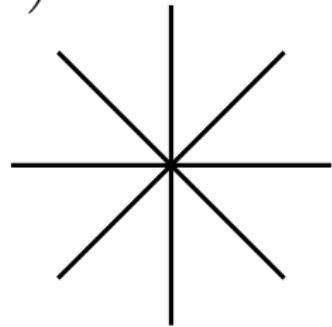
Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$



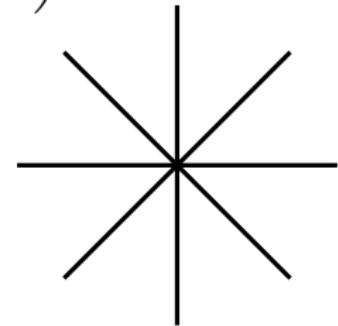
Reflection arrangements

Example

$G = C_2 \wr S_2$ (Coxeter group of type B_2)

Reflections in G :

$$\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}, \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}$$



The **reflection arrangement** of G is the set

$$\mathcal{A}_G = \{\text{Fix}(g) \mid g \in G \text{ reflection}\}.$$

Cohomology

Cohomology

Goal: Study the (singular, rational) cohomology of the complement space

$$M(\mathcal{A}_G) := V \setminus \mathcal{A}_G.$$

Cohomology

Goal: Study the (singular, rational) cohomology of the complement space

$$M(\mathcal{A}_G) := V \setminus \mathcal{A}_G.$$

- $H^*(M(\mathcal{A}_G); \mathbb{Q})$ is a finite-dimensional, graded \mathbb{Q} -algebra

Cohomology

Goal: Study the (singular, rational) cohomology of the complement space

$$M(\mathcal{A}_G) := V \setminus \mathcal{A}_G.$$

- $H^*(M(\mathcal{A}_G); \mathbb{Q})$ is a finite-dimensional, graded \mathbb{Q} -algebra
- $H^i(M(\mathcal{A}_G); \mathbb{Q}) = 0$ if $i < 0$, $i > 3n$ or $3 \nmid i$

Cohomology

Goal: Study the (singular, rational) cohomology of the complement space

$$M(\mathcal{A}_G) := V \setminus \mathcal{A}_G.$$

- $H^*(M(\mathcal{A}_G); \mathbb{Q})$ is a finite-dimensional, graded \mathbb{Q} -algebra
- $H^i(M(\mathcal{A}_G); \mathbb{Q}) = 0$ if $i < 0$, $i > 3n$ or $3 \nmid i$
- Griffeth–Guevara (2025) compute the Poincaré polynomial of $H^*(M(\mathcal{A}_G); \mathbb{Q})$ for G an irreducible quaternionic reflection group

Cohomology

Goal: Study the (singular, rational) cohomology of the complement space

$$M(\mathcal{A}_G) := V \setminus \mathcal{A}_G.$$

- $H^*(M(\mathcal{A}_G); \mathbb{Q})$ is a finite-dimensional, graded \mathbb{Q} -algebra
- $H^i(M(\mathcal{A}_G); \mathbb{Q}) = 0$ if $i < 0$, $i > 3n$ or $3 \nmid i$
- Griffeth–Guevara (2025) compute the Poincaré polynomial of $H^*(M(\mathcal{A}_G); \mathbb{Q})$ for G an irreducible quaternionic reflection group
- Cadegan-Schlieper (2018): “Orlik–Solomon presentation”

$$H^*(M(\mathcal{A}_G); \mathbb{Q}) \cong \Lambda(\mathbb{Q}^m)/I$$

with $m = |\mathcal{A}_G|$ and I comes from dependency relations in \mathcal{A}_G

Cohomology

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Precise goal: Determine the Poincaré polynomial of the invariants

$$H^*(M(\mathcal{A}_G); \mathbb{Q})^G \cong H^*(M(\mathcal{A}_G)/G; \mathbb{Q})$$

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Precise goal: Determine the Poincaré polynomial of the invariants

$$H^*(M(\mathcal{A}_G); \mathbb{Q})^G \cong H^*(M(\mathcal{A}_G)/G; \mathbb{Q})$$

for all quaternionic reflection groups

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Precise goal: Determine the Poincaré polynomial of the invariants

$$H^*(M(\mathcal{A}_G); \mathbb{Q})^G \cong H^*(M(\mathcal{A}_G)/G; \mathbb{Q})$$

for all quaternionic reflection groups:

$$P(\mathcal{A}_G, G; t) = \sum_{i=0}^{3n} \dim_{\mathbb{Q}}(H^i(M(\mathcal{A}_G); \mathbb{Q})^G) t^i.$$

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Precise goal: Determine the Poincaré polynomial of the invariants

$$H^*(M(\mathcal{A}_G); \mathbb{Q})^G \cong H^*(M(\mathcal{A}_G)/G; \mathbb{Q})$$

for all quaternionic reflection groups:

$$P(\mathcal{A}_G, G; t) = \sum_{i=0}^{3n} \dim_{\mathbb{Q}}(H^i(M(\mathcal{A}_G); \mathbb{Q})^G) t^i.$$

For real reflection groups: Brieskorn (1973)

Cohomology

The group G acts on \mathcal{A}_G via $g.\text{Fix}(r) = \text{Fix}(grg^{-1})$.

This induces an action of G on $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Precise goal: Determine the Poincaré polynomial of the invariants

$$H^*(M(\mathcal{A}_G); \mathbb{Q})^G \cong H^*(M(\mathcal{A}_G)/G; \mathbb{Q})$$

for all quaternionic reflection groups:

$$P(\mathcal{A}_G, G; t) = \sum_{i=0}^{3n} \dim_{\mathbb{Q}}(H^i(M(\mathcal{A}_G); \mathbb{Q})^G) t^i.$$

For real reflection groups: Brieskorn (1973)

For complex reflection groups: Lehrer (2004), Callegaro–Marin (2014), Marin (2017), and Douglass–Pfeiffer–Röhrle (2025)

A list of groups

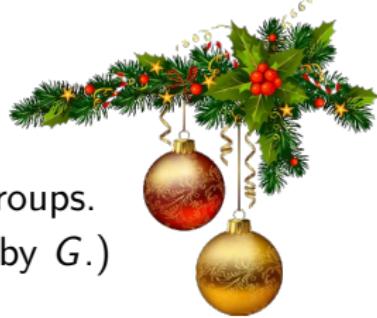
A list of groups

It suffices to consider quaternionically irreducible groups.

A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

A list of groups

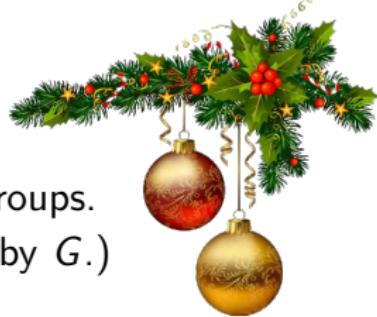


It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

A list of groups



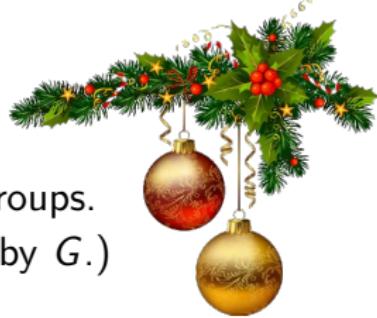
It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

- Complex reflection groups (Shephard–Todd, 1954)

A list of groups



It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

- Complex reflection groups (Shephard–Todd, 1954)
- Imprimitive groups: $K \wr S_n$ with $K \leq \mathbb{H}^\times$ finite and certain normal subgroups of these

A list of groups

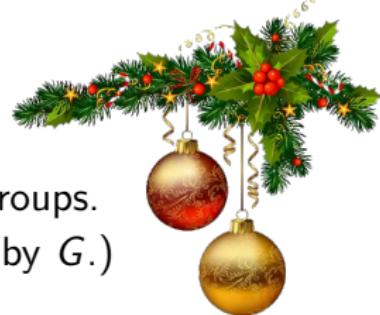
It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

- Complex reflection groups (Shephard–Todd, 1954)
- Imprimitive groups: $K \wr S_n$ with $K \leq \mathbb{H}^\times$ finite and certain normal subgroups of these
- 13 exceptional groups with $2 \leq \dim(V) \leq 5$

A list of groups



It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

- Complex reflection groups (Shephard–Todd, 1954)
- Imprimitive groups: $K \wr S_n$ with $K \leq \mathbb{H}^\times$ finite and certain normal subgroups of these
- 13 exceptional groups with $2 \leq \dim(V) \leq 5$
- Several infinite families in dimension 2

A list of groups

It suffices to consider quaternionically irreducible groups.
(There are no $V = V_1 \oplus V_2$, $V_i \neq 0$, left invariant by G .)

Classification of irreducible quaternionic reflection groups

Cohen (1980), Taylor (2025), Waldron (2025)

- Complex reflection groups (Shephard–Todd, 1954)
- Imprimitive groups: $K \wr S_n$ with $K \leq \mathbb{H}^\times$ finite and certain normal subgroups of these
- 13 exceptional groups with $2 \leq \dim(V) \leq 5$
- Several infinite families in dimension 2

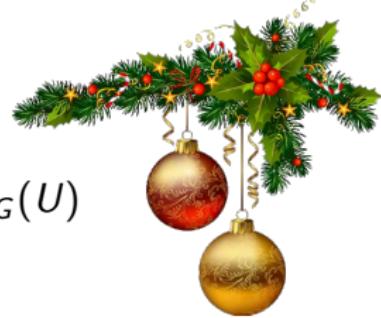
Lemma

If $\dim(V) = 2$ and G acts on \mathcal{A}_G with k orbits, then

$$P(\mathcal{A}_G, G; t) = 1 + kt^3 + (k-1)t^6.$$

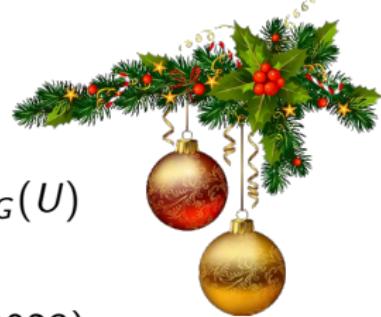
Have you tried induction?

Have you tried induction?



A subgroup $H \leq G$ is called **parabolic** if $H = \text{Stab}_G(U)$ for some subspace $U \leq V$.

Have you tried induction?

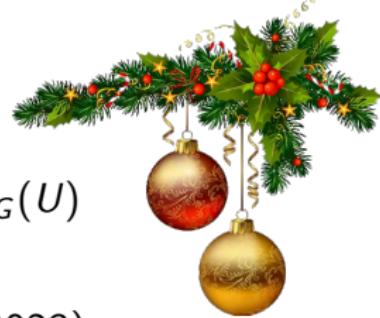


A subgroup $H \leq G$ is called **parabolic** if $H = \text{Stab}_G(U)$ for some subspace $U \leq V$.

Theorem (Steinberg, 1964; Bellamy–S.–Thiel, 2023)

Parabolic subgroups of reflection groups are reflection groups.

Have you tried induction?



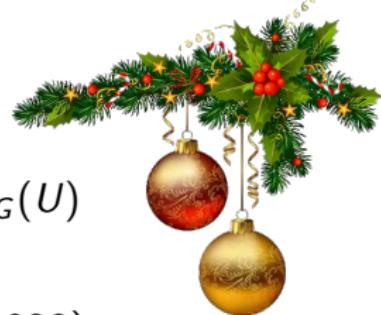
A subgroup $H \leq G$ is called **parabolic** if $H = \text{Stab}_G(U)$ for some subspace $U \leq V$.

Theorem (Steinberg, 1964; Bellamy–S.–Thiel, 2023)

Parabolic subgroups of reflection groups are reflection groups.

Let X_k be a set of representatives of the conjugacy classes of parabolic subgroups of G of degree k .

Have you tried induction?



A subgroup $H \leq G$ is called **parabolic** if $H = \text{Stab}_G(U)$ for some subspace $U \leq V$.

Theorem (Steinberg, 1964; Bellamy–S.–Thiel, 2023)

Parabolic subgroups of reflection groups are reflection groups.

Let X_k be a set of representatives of the conjugacy classes of parabolic subgroups of G of degree k .

Proposition

We have

$$H^{3k}(M(\mathcal{A}_G); \mathbb{Q})^G \cong \bigoplus_{P \in X_k} H^{3k}(M(\mathcal{A}_P); \mathbb{Q})^{N_G(P)}$$

as $\mathbb{Q}G$ -modules.

The imprimitive groups

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

$$G_n(K, H) := \left\{ \begin{pmatrix} k_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & k_n \end{pmatrix}^\sigma \mid \begin{array}{l} k_i \in K, \sigma \in S_n, \\ k_1 \cdots k_n \in H \end{array} \right\} \leq \mathrm{GL}_n(\mathbb{H}).$$

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

$$G_n(K, H) := \left\{ \begin{pmatrix} k_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & k_n \end{pmatrix}^\sigma \mid \begin{array}{l} k_i \in K, \sigma \in S_n, \\ k_1 \cdots k_n \in H \end{array} \right\} \leq \mathrm{GL}_n(\mathbb{H}).$$

- For $n \geq 3$, all imprimitive irreducible quaternionic reflection groups are of this form (Cohen, 1980)

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

$$G_n(K, H) := \left\{ \begin{pmatrix} k_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & k_n \end{pmatrix}^\sigma \mid \begin{array}{l} k_i \in K, \sigma \in S_n, \\ k_1 \cdots k_n \in H \end{array} \right\} \leq \mathrm{GL}_n(\mathbb{H}).$$

- For $n \geq 3$, all imprimitive irreducible quaternionic reflection groups are of this form (Cohen, 1980)
- Options for K : 2 infinite series + 3 more groups

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

$$G_n(K, H) := \left\{ \begin{pmatrix} k_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & k_n \end{pmatrix}^\sigma \mid \begin{array}{l} k_i \in K, \sigma \in S_n, \\ k_1 \cdots k_n \in H \end{array} \right\} \leq \mathrm{GL}_n(\mathbb{H}).$$

- For $n \geq 3$, all imprimitive irreducible quaternionic reflection groups are of this form (Cohen, 1980)
- Options for K : 2 infinite series + 3 more groups
- K cyclic $\implies G_n(K, H)$ is a complex reflection group:
 $G_n(C_m, C_{m/p}) = G(m, p, n)$

The imprimitive groups

Let $n \geq 1$, $K \leq \mathbb{H}^\times$ finite and $[K, K] \leq H \leq K$.

$$G_n(K, H) := \left\{ \begin{pmatrix} k_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & k_n \end{pmatrix}^\sigma \mid \begin{array}{l} k_i \in K, \sigma \in S_n, \\ k_1 \cdots k_n \in H \end{array} \right\} \leq \mathrm{GL}_n(\mathbb{H}).$$

- For $n \geq 3$, all imprimitive irreducible quaternionic reflection groups are of this form (Cohen, 1980)
- Options for K : 2 infinite series + 3 more groups
- K cyclic $\implies G_n(K, H)$ is a complex reflection group:
 $G_n(C_m, C_{m/p}) = G(m, p, n)$
- $H \neq \{1\} \implies$ the lattice of parabolic subgroups is the **Dowling lattice** of K

Results (imprimitive groups)

Results (imprimitive groups)

Theorem

Let $G = G_n(K, H)$ with K not cyclic. Then we have

$$P(\mathcal{A}_G, G; t) = 1 + 2t^3 + \cdots + 2t^{3n-6} + at^{3n-3} + (a-1)t^{3n}$$

Results (imprimitive groups)

Theorem

Let $G = G_n(K, H)$ with K not cyclic. Then we have

$$P(\mathcal{A}_G, G; t) = 1 + 2t^3 + \cdots + 2t^{3n-6} + at^{3n-3} + (a-1)t^{3n}$$

with

$$a = \begin{cases} 3, & [K : H] \text{ and } n \text{ are even and } K/H \text{ is cyclic,} \\ 5, & [K : H] \text{ and } n \text{ are even and } K/H \text{ is not cyclic,} \\ 2, & \text{otherwise.} \end{cases}$$

Results (exceptional groups)

Results (exceptional groups)

Compute $P(\mathcal{A}_G, G; t)$ explicitly with OSCAR using a “non-broken circuit basis” of $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Results (exceptional groups)

Compute $P(\mathcal{A}_G, G; t)$ explicitly with OSCAR using a “non-broken circuit basis” of $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Algorithms by Bishop–Douglass–Pfeiffer–Röhrle, 2013;
Cordovil–Etienne, 2001

Results (exceptional groups)

Compute $P(\mathcal{A}_G, G; t)$ explicitly with OSCAR using a “non-broken circuit basis” of $H^*(M(\mathcal{A}_G); \mathbb{Q})$.

Algorithms by Bishop–Douglass–Pfeiffer–Röhrle, 2013;
Cordovil–Etienne, 2001

G	n	$P(\mathcal{A}_G, G; t)$
$W(Q)$	3	$1 + t^3$
$W(R)$	3	$1 + t^3$
$W(S_1)$	4	$1 + t^3 + t^9 + t^{12}$
$W(S_2)$	4	$1 + t^3 + t^9 + t^{12}$
$W(S_3)$	4	$1 + t^3 + t^9 + t^{12}$
$W(T)$	4	$1 + t^3 + t^9 + t^{12}$
$W(U)$	5	$1 + t^3 + t^{12} + t^{15}$